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a  b  s  t  r  a  c  t

Surrogate  modelling  aims  to  reduce  computational  costs  by avoiding  the  solution  of rigorous  models  for
complex  physicochemical  systems.  However,  it requires  extensive  sampling  to attain  acceptable  accuracy
over the entire  domain.  The  well-known  space-filling  techniques  use  sampling  based  on uniform,  quasi-
random,  or  stochastic  distributions,  and  are  typically  non-adaptive.  We  present  a  novel  technique  to  select
sample  points  systematically  in an adaptive  and  optimized  manner,  assuring  that  the  points  are  placed
in  regions  of  complex  behaviour  and  poor representation.  Our  proposed  smart  sampling  algorithm  (SSA)
solves a series  of  surrogate-based  nonlinear  programming  problems  for point  placement  to  enhance  the
overall  accuracy  and  reduce  computational  burden.  Our  extensive  numerical  evaluations  using  1-variable
test problems  suggest  that  our  SSA  performs  the  best,  when  its  initial  sample  points  are  generated  using
uniform  sampling.  For now,  this  conclusion  is valid  for 1-variable  functions  only,  and  we are  testing  our
algorithm  for  n-variable  functions.

©  2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Naturally, we grasp the understanding of a complex phe-
nomenon by opting for a simpler format. Similarly, we  use process
simulators to model, study, and analyze complex and nonlin-
ear physicochemical processes. However, such simulations can
be compute-intensive, and running them repeatedly in an opti-
mization/analysis procedure can be computationally prohibitive.
Furthermore, numerical models can pose significant hurdles within
a continuous optimization algorithm. Therefore, it helps to convert
a high-fidelity simulation model into a computationally inexpen-
sive surrogate model that captures its essential features with
prescribed numerical accuracy.

Surrogate modelling, also known as metamodeling, is a tech-
nique to generate a mathematical or numerical representation of a
complex system based on some sampled input-output data. Many
surrogate modelling techniques have been developed over the past
few decades such as Polynomial Surface Response Models (PRSM)
(Forrester and Keane, 2009; Myers and Montgomery, 2002; Queipo
et al., 2005), Kriging (Cressie, 1990; Forrester et al., 2008a; Martin
and Simpson, 2005; Sakata et al., 2003; Simpson, 1998), Radial
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Basis Functions (RBF) (Hardy, 1971; Hussain et al., 2002), Support
Vector Regression (SVR) (Clarke et al., 2005), and Artificial Neural
Networks (ANNs) (Yegnanarayana, 2004). The literature (Forrester
and Keane, 2009; Henao and Maravelias, 2010, 2011; Queipo et al.,
2005; Shan and Wang, 2010; Wang and Shan, 2007) has compared
them and discussed their applications to various systems.

Irrespective of the technique, building a surrogate model
requires sample points. The process of generating such points is
known as sampling. We  can classify the existing sampling meth-
ods into two broad categories: non-adaptive and adaptive. The four
types of non-adaptive methods are grid-based, pattern/geometry-
based, stochastic, and quasi-random. The grid-based method
simply distributes sample points to form a uniform grid (Cartesian
grid). The second type employs statistics-driven methods such as
the design of experiments to fill space. These include full/half facto-
rial designs (Fisher, 1935), central composite (CC) designs (Box and
Wilson, 1951), Box-Behnken (Box and Behnken, 1960), Plackett-
Burman (Plackett and Burman, 1946), Delaunay triangulations and
their dual structures (Delaunay, 1934), and Voronoi tessellations
(Voronoï, 1908). These methods work well for low dimensions
(N ≤ 3) (Davis and Ierapetritou, 2010); (Crombecq et al., 2009), but
become extremely costly for large N as in the case of geometry and
factorial designs, or inaccurate due to the lack of spatial coverage
as in the case of CC, Plackett-Burman, and Box-Beheken designs.
Moreover, these methods rapidly face the curse of dimensionality
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(Forrester et al., 2008c). The third type of sampling methods relies
on stochastic sampling with the aim to fill space. For instance, sam-
pling based on random distribution is the most straightforward.
The more sophisticated methods include Monte Carlo sampling
(Metropolis and Ulam, 1949) and variations (Koehler and Owen,
1996; Niederreiter, 2010) that combine random sampling and
probabilistic filtering; Latin hypercube sampling (McKay et al.,
1979) that fills hypercube bins via random placements but subject
to projection filters; and orthogonal arrays (Hedayat et al., 2012;
Rao, 1946, 1947) that generalize Latin hypercube sampling (Giunta
et al., 2003). Finally, the fourth type generates sample points quasi-
randomly using low-discrepancy sequences such as Hammersley
(Hammersley and Handscomb, 1964), Sobol (Sobol’, 1967), and Hal-
ton (Halton and Smith, 1964). While these methods manage the
sample size much better (Mascagni and Hongmei, 2004; Queipo
et al., 2005), they may  fail to capture the characteristics of the space
properly at higher N. Typically, the system output is computed
from the high-fidelity model at these sample points to generate
the required input-output data for surrogate development. If the
resulting surrogate does not meet expectations, then the model is
reconstructed by adding more sample points.

The adaptive sampling methods attempt to address the draw-
backs of the non-adaptive techniques discussed above. An adaptive
method starts with a small set of sample points, and then adds
points sequentially using some criteria or procedures. Provost et al.
(1999) have shown that such methods normally require fewer
sample points than the non-adaptive ones for the same surro-
gate accuracy. The approaches and objectives behind the adaptive
techniques are varied. The most commonly used grid sampling
technique, namely the Cartesian grid, can be made adaptive by
evolving the entire grid rather than individual sample points. If a
grid at hand is inadequate, then midpoints are inserted as additional
sample points to make a finer grid. Thus, if a 5 × 5 grid (25 sample
points) is inadequate for a 2D surrogate, then 56 additional points
are added to get a 9 × 9 grid of 81 points. It is clear that the sample
size increases exponentially with N in this method. Therefore, it is
important to explore the idea of strategic sampling that not only
fills the space, but also exploits the system knowledge for smart
placements (Forrester et al., 2008b). Crombecq et al. (2009) pro-
posed a novel sequential strategy involving both exploration and
exploitation. They used a combination of derivative-based local lin-
ear approaximations and Voronoi tesselations to place new sample
points. But, in most cases, the derivatives of a system to be mod-
elled are not available a priori, and estimating them accurately
and efficiently can be an arduous task due to the black-box and
compute-intensive nature of the system. Moreover, as discussed
earlier, the Voronoi tesselations can rapidly become computation-
ally expensive at higher dimensions. A recent work by Eason and
Cremaschi (2014) proposes an adaptive sampling strategy for ANN
surrogates. Instead of generating all sample points in one shot, they
generate them sequentially and randomly in a piecemeal manner.
They use a score to select new sample points from the random
points generated at each iteration. The score considers the nor-
malized nearest neighbor distance of a potential point from the
current sample points and its normalized expected variance eval-
uated using jackknifing (Quenouille, 1956). Though their selection
of sample points is systematic, it is still from randomly generated
points. Cozad et al. (2014, 2015) propose adaptive sampling for their
surrogate modelling tool called ALAMO. They add sample points
one at a time to an initial DoE-based set. For each sample point, they
solve a derivative-free optimization problem to maximize the devi-
ation of the surrogate from the real function. This can obviously be
compute-intensive, as it requires the evaluation of the real function
during optimization. Jin et al. (2016) essentially made two modi-
fications to the work of (Eason and Cremaschi, 2014). One, they
improved ANN modelling by introducing auto-node selection, and

second, they used maximum predicted error instead of expected
variance.

In this work, we develop a smart sampling algorithm (SSA)
that differs from the current approaches described above in four
novel aspects. First, unlike Cremaschi and coworkers, it does not
use any random sample points, potential or otherwise. Second,
unlike Cozad et al., it employs surrogate-based optimization using
derivative information rather than a black-box-based, derivative-
free optimization. Third, it exploits all sample points as one set
instead of dividing them into small subsets. Lastly, it integrates both
spatial and quality considerations in a single objective to place new
sample points.

In the rest of this article, we first define our problem and the key
concepts behind our algorithm. Then, we  present our algorithm,
and illustrate it with a simple example and a practical case study.
Finally, we evaluate its performance numerically using a variety of
single-variable test problems from the literature.

2. Problem Statement

Let y = f (x) ; f : RN → R  for xL ≤ x ≤ xU describe the behaviour
of a unit/process/system whose experimental or computational
quantification is complex and compute-intensive. We  need an ana-
lytical or numerical surrogate model ỹ = S (x) to replace f (x) in an
optimization and/or analysis task. Hence, our problem is as follows.

Given:

• y = f (x) ; f : RN → R  for xL ≤ x ≤ xU .
• A mathematical form for S (x).
• Upper limit (Kmax) on the number of sample points at which f (x)

may  be evaluated to obtain S (x),  or a desired accuracy for S (x) .

Obtain:

• Kmax sampling points xk (k = 1, 2, . . .,  Kmax) that give the best S (x)
for approximating f (x)

• Or, the sampling points that give S (x) with a prescribed accuracy
for approximatingf (x) .

3. Motivation

The most common sampling methods employed in surrogate
construction are uniform (US), random (RS), statistical (LHS, e.g.
Latin Hypercube), central composite design (CCD), and quasi-
random low-discrepancy (QS, e.g. Sobol sequence). Each generates
a set of sample points to achieve a spatially uniform coverage
ofRN , and evaluates f (x) at these points to obtain the required
input-output data to constructS (x).  This surrogate development
paradigm involves several key issues: How many sample points
should we use? How (one-shot or adaptively) should we  generate
them? How do they affect the quality of surrogate approximation?
Which sampling method gives the best approximation for a given
form ofS (x)?

Let  us look at these questions with the help of an example. Con-
sider using US and RS to obtain S (x) = a0 + a1x + a2x2 + a3x3 + a4x4

for f (x) = x × sin (2 × � × x) on0 ≤ x ≤ 1. For US, we compute f (x)
atx = 0, x = 1, and nine equidistant points between them. We
getS (x) = −0.02 + 0.75x + 6.65x2 − 25.27x3 + 17.94x4. Now, let us
say that we  have a new sampling method that gives us the seven
points shown by diamonds in Fig. 1, which give us a surrogate as
good as the one from US. In other words, US amounted to over-
sampling. Now, let us assume that seven points are sufficient to get
an acceptableS (x),  so we  generate seven random points between
0 and 1. Fig. 1 shows that S (x) does well only forx ∈ [0.08, 0.80].
In other words, RS can mean poor sample placement. Hence, the
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