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a  b  s  t  r  a  c  t

Modeling  of  continuous  and  controlled  nanocrystal  synthesis  in  a  microfluidic  reactor  is presented.  The
population  balance  model  that describes  the  nanocrystal  synthesis  consists  of a population  balance  equa-
tion  and  a set  of  species  concentration  equations.  In order  to incorporate  the  effects  of both  reaction  and
diffusion  limited  growth  conditions,  a kinetic  model  with  size-dependent  growth  and  nucleation  rate
expressions  are  considered.  An efficient  finite  element  scheme  based  on  Strang  splitting  that  handles
size-dependent  particle  diffusion  and  non-uniform  growth  expressions  in  the high  dimensional  popu-
lation  balance  equation  is proposed  to solve  the  model  equations.  After  the  validation  of  the numerical
scheme,  an  array  of  parametric  studies  is  performed  to study  the  effects  of  the  flow  condition  and  the
growth  environment  on  the  nanocrystal  synthesis  in the  microfluidic  reactor.  The computational  results
are  consistent  with the experimental  observations.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Nanoparticle synthesis in microfluidic reactors is one of the key
areas of chemical engineering (Shavel et al., 2012; Akroyd et al.,
2011; Liu et al., 2014). Microfluidic reactors provides a controlled
mixing mechanism that facilitates to produce nanoparticles con-
tinuously with better control over the size and the polydispersity
compared to the batch process. Further, the microfluidic reactors
are cost effective, especially when the reagents are precious. In
addition to several industrial applications, see Ramkrishna and
Singh (2014), Myerson (2002) for an overview, microfluidic reactor
technology is also of scientific interest. Several experiments on syn-
thesis of nanoparticles in microfluidic reactors have been reported
in the literature (Shalom et al., 2007; Edel et al., 2002; Yang et al.,
2009; Khan et al., 2004; Lin et al., 2004).

In addition to the experimental studies, modeling is also pre-
ferred due to its own advantages. The crystallization process is
modeled by the population balance equation (PBE), whereas com-
putational fluid dynamics (CFD) models are used describe the
fluid flow in the reactor. There have been several numerical stud-
ies reported in the literature for the solution of the population
balance equation (Kumar and Ramkrishna, 1996; Alexopoulos
et al., 2004), whereas studies that consider PBE coupled with CFD
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models are very limited. Since the evolution of nanocrystals is dif-
ferent from the evolution of micrometer sized crystals (van Embden
and Mulvaney, 2005; van Embden et al., 2009), developing com-
putational models with a precise inclusion of the growth and the
nucleation rate of nanocrystallization is very challenging.

Very few numerical models on nanocrystal synthesis in
microfluidic reactors have been reported in the literature
(Ramkrishna and Singh, 2014; Phillips et al., 2014; Rigopoulos,
2010). Nevertheless, most of the earlier computational studies
have been performed for homogeneous systems (van Embden and
Mulvaney, 2005; van Embden et al., 2009; Iggland and Mazzotti,
2012; Vetter et al., 2013), that is, for PBE without CFD models.
The numerical simulation of population balance model is highly
challenging due to the high dimensional nature of the population
balance equation. To address the issue of computational cost asso-
ciated with the solution of the population balance model in high
dimensions, the operator splitting finite element scheme has been
proposed in Ganesan (2012). The splitting-scheme has successfully
been used in Ganesan and Tobiska (2012) for computations of urea
synthesis process.

In this article, we focus on the numerical simulation of nanocrys-
tal synthesis in a microfluidic reactor using the splitting scheme. In
particular, simultaneous nucleation and growth processes modeled
using the population balance equation coupled with the CFD mod-
els are considered.

This article contains three main sections. In the first section, the
mathematical model for a nanocrystal synthesis in a microfluidic
reactor is described. In the second section, a finite element scheme
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that includes the Strang-splitting scheme is presented. Further, an
axisymmetric formulation is derived for the considered model. In
the third section, the computational setup, validation of the numer-
ical scheme and an array of numerical studies are presented. Finally,
the paper concludes with a summary.

2. Mathematical model

A cylindrical microfluidic reactor, �x ⊂ R
3 (physical domain)

with the boundary ∂� := �in ∪ �out ∪ �wall is considered in this
paper, see Fig. 1.

Suppose A and B denote the material of the desired nanocrystal
and its precursor, respectively. Then the considered particulate sys-
tem consists of two species in the carrier (liquid) phase, denoted by
A(l) and B(l), and one species in the particle (solid) phase, denoted
by A(s). We  model the formation of A(l) from B(l) through a reaction,
followed by growth/dissolution and nucleation of A(l) to form the
desired solid nanocrystal A(s), that is,

B(l) T−→A(l)Nucleation, Growth
�

Dissolution
A(s).

The simultaneous formation and crystallization of A are
described by a set of species concentration equations and a pop-
ulation balance equation (PBE). In the model, we assume a uniform
temperature profile and a Hagen–Poiseuille steady-state velocity
profile in the reactor. Further, the aggregation and breakage are
neglected in the model. Nevertheless, incorporating the aggrega-
tion and breakage is straightforward in the considered numerical
scheme, see for example, Anker et al. (2015).

In a flow environment, the mass transport equations of species
in the carrier phase are given by:

∂Ck
∂t

− Dk�Ck + (b · ∇)Ck = hk in �x × (0,  t∞], (1)

where the subscript k := {a, b} indicates species A(l) and B(l) respec-
tively. Here, Ck(x, t), Dk and hk denote the concentration, diffusion
coefficient and source term of the species k, respectively. More-
over, the source term consists of reaction as well as external source
terms. Further, b denotes the convective fluid velocity field, t ∈ (0,
t∞] is the time, t∞ is the given final time, � and ∇ are Laplace
and gradient operators with respect to the spatial variable x ∈ �x,
respectively. The source terms in (1) are given by

ha = Ksr[Cb]
ˇ − ∂

∂t

(
Q

∫ ∞

0

(�3f ) d�

)
,

hb = −Ksr[Cb]ˇ,

Q = 4��
3Mw

,

where Ksr and  ̌ denote the rate constant and the order of reaction
for the formation of A(l). Further, � is the density of the bulk material
and Mw is its monomeric molecular weight. Moreover, � repre-
sents the size of the crystal, for instant, the radius of the (spherical)
crystal, and f is the number density function of the crystal.

Fig. 1. Physical domain of the cylindrical microfluidic reactor.

In the model, the evolution of the particle size distribution,
denoted by f, is governed by the population balance equation:

∂f
∂t

− ∇ · (Dp∇f ) + (b · ∇)f + ∂(fG)
∂�

= hp in �x × �� × (0,  t∞], (2)

where �� denotes the internal state domain. Here, Dp denotes the
particle diffusion coefficient in the physical domain, and G is the
crystal growth rate term. Further, the size-dependent particle dif-
fusion is given by

Dp(�) = RT

6Na�	�
,

where R is the gas constant, T is the reactor temperature, Na is Avog-
ardo number and 	 denotes the viscosity of the carrier phase. For
the growth rate, we  use the particle size-dependent model

G(Ca, �) = d�

dt
= DmVm(Ca − C∞ exp((2
Vm)/�RT))

� + Dm/kr
,

proposed by van Embden et al. (2009), in which the “monomer”
has been considered as a single atomic unit. Here, Dm, Vm, kr and 

denote diffusion coefficient, molar volume, reaction rate constant
of the monomeric reaction and surface energy of the monomer
respectively. Further, C∞ is the concentration of monomers in equi-
librium with an infinitely flat surface. In the population balance Eq.
(2), the source term hp accounts for the net birth rate term induced
by the nucleation rate, and it is modeled by

hp = Rnucg(�).

Here, the nucleation rate, Rnuc is defined by

Rnuc = 8�rmDmNaSpu+1[C∞]2 exp

(
−4�r2mp

2/3


3kBT

)
,

see van Embden et al. (2009) for more details. Here, rm is the effec-
tive radius of the monomer, kB is the Boltzmann constant, and u is
the coagulation coefficient. Moreover, the supersaturation S, and p
are given by:

S = Ca
C∞
, p =

(
rcrit
rm

)3
.

Here, rcrit denotes the critical radius of the monomer. Further, g(�)
is the nucleation distribution function. We  use a thermalized dis-
tribution (Gaussian) around the critical radius rcrit with a full width
at half maximum, that is, FWHM ≈ kBT.

In order to solve the model Eqs. (1) and (2), the initial conditions
are prescribed as

Ck(x, 0) = 0, f (x, �, 0) = 0 ∀ x ∈ �x, ∀ � ∈ ��,

whereas a well-mixed condition at the inlet (�in) and no flux con-
dition at the wall (�wall) as well as at the outlet (�out) are imposed,
that is,

Ca(x, t) = 0, Cb(x, t) = C0, ∀ x ∈ �in

∂Ck
∂nx

= 0,
∂f
∂nx

= 0 ∀ x ∈ �out
⋃
�wall

f (x, �, t) = 0 ∀x ∈ �in.

(3)

Here, nx denotes the outward normal to the boundary surfaces of
�x.

We  next model the boundary conditions for the internal domain.
Since the dissolution rate of the crystals will increase when the size
of the crystals decreases (i.e., when � → 0), crystals below a certain
size will disappear almost instantaneously. Therefore, it is safe to
assume that the number density of the crystal is zero when the size
of the crystal is below a critical value, �min. Further, the maximum
crystal size, �∞, has to be sufficiently large enough in order to avoid
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