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a  b  s  t  r  a  c  t

A  diagnostic  algorithm  is  described  in this  article  that  is based  on  clustering  qualitative  event  sequences
called  traces.  A  sufficient  number  of  training  traces  are  used  instead  of  an internal  model  to specify
the  faulty  models  of  the system.  The  diagnosis  consists  of two  phases.  In the  off-line  training  phase
diagnostic  clusters  representing  nominal  and  faulty  behavior  are  formed  from  the  set  of  training  traces,
while  the  centroids  of  these  clusters  are  stored.  Arbitrary  measured  traces  in  the  on-line  diagnosis  phase
are compared  with  the centroids,  to recognize  the  most  probable  faulty  scenario  for  the  trace.  The  effects
of different  mapping  functions  and  different  qualitative  ranges  on  the  clustering  are  investigated,  and
the  diagnostic  resolution  of  the  method  is compared  and discussed  using  a  simple  process  system.  A
diagnostic  case  study  using  the benchmark  of  Tennessee  Eastman  process  (TEP)  is  utilized  to illustrate
the  efficiency  of the  proposed  method.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Early and accurate fault diagnostics is one of the most important
challenges during the operation of modern day process systems.
Primeval fault mitigation and isolation due to proper diagnostics
plays a crucial role in avoiding huge losses and plant breakdowns
caused by the consequences of initially smaller and isolated but
propagating failures discovered too late.

Due to the high importance of the field, the relevant literature
is extensive with model-based diagnostic methods tradition-
ally being the most widespread. Process fault diagnostics based
on process and fault models had been widely described by
Venkatasubramanian et al. (2003a,b,c) in review articles. Accord-
ing to Venkatasubramanian et al. (2003b), model based a priori
knowledge can be broadly classified as quantitative and qualitative.
Fault detection using these qualitative models can be performed
by using expert systems with different kind of reasoning, using
signed directed graphs (SDGs) for modeling cause-effect relations
(for instance in Vedam and Venkatasubramanian, 1997) or fault
trees describing the relations between primary events to top level
events or hazards. Fault propagation analysis (Gabbar, 2007) can be
also used for the identification of faults, causes and consequences
in a systematic manner.

∗ Corresponding author.
E-mail addresses: atezs82@gmail.com (A. Tóth), hangos@scl.sztaki.hu

(K.M. Hangos).

Qualitative physics is also used for process system modeling as
a common sense reasoning about physical systems. This approach
is based on qualitative or ordinary differential equations describ-
ing the process system to be diagnosed. These qualitative dynamic
models together with many different methods (like the one in Tóth
et al., 2014) use an abstract hierarchy of process knowledge which
is based on decomposing the process system into subcomponents,
in order to decrease computational complexity and speed up the
diagnostics task.

The information collected by hazard identification can be also
regarded as a special form of process models. An attempt to unite
the diagnostic information stored in HAZOP and FMEA analysis
results, called the blended HAZID methodology was described in
Németh and Cameron (2013) together with its use for process sys-
tem diagnosis tasks. This approach has been further extended in
Guo and Kang (2015) using dynamic fault trees.

Fault diagnosis includes two sub-steps even in the most gen-
eral case: fault detection and fault isolation or identification. While
the first sub-step needs an accurate model of the process in its
normal, i.e. non-faulty operation mode, fault models of the con-
sidered faulty modes are needed for the latter. Therefore, the most
important aspect of a fault diagnostics algorithm for process sys-
tems is the fault model which requires significant amount of human
expertise and work to set up and maintain. Our main aim in this
article is to suggest a data-driven diagnostic procedure which may
require less amount of human assistance as compared to a model-
based approach during set-up and operation and still remains
feasible as a fault diagnostic method. While a satisfactory model of a
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possibly complex process system in each of its considered faulty
mode is needed that requires skilled human efforts, informative
enough observed data set that are annotated with the recognized
fault(s) by the plant operators may  form the basis of a data-driven
diagnostic procedure.

In the last review article of the series by Venkatasubramanian
et al. (2003c) on process systems diagnosis, process history
based methods are surveyed. Instead of an a priori model, these
methods require a large amount of historical process data, and
they can be classified by the way they extract information
from the process data (this operation is called feature extrac-
tion). Feature extraction can be qualitative (for example using
rule-based expert systems or qualitative trend analysis) and
quantitative (using statistical methods, such as PCA or neural net-
works).

For describing arbitrary output signal values qualitative trend
analysis (QTA) can be used, by comparing qualitative trends of
nominal and actual signal values (a good example can be found
in Maurya et al., 2005). In some newer results (in Maurya et al.,
2007), these methods have been even combined to perform fault
diagnosis.

A special type of historical process data are the so called alarms,
the timed sequence of which has been utilized for early fault detec-
tion and diagnosis in Agudelo et al. (2013). These alarm sequences
can be also regarded as event logs. In van der Aalst et al. (2007) a
process mining tool called ProM is described which is capable of
discovering process models in the form of Petri Nets, using event
logs collected from process systems.

This tool also supports conformance checking, verification,
model extension and transformation as well as model discovery. A
ProM extension described in Alves de Medeiros et al. (2008) uses K-
means clustering for categorizing event logs prior to mining them,
in order to achieve faster operation. In a slightly different approach
described in Rozinat et al. (2008), Petri nets are used to build up
models from event sequences, and the fitness and appropriateness
of the model is calculated.

In the approach described in this paper similar metrics to ProM
are used to perform the validation (in the way the fitness of
the model is calculated) after an initial training phase performed
on the historical process data. As a technique used thoroughly
in machine learning, clustering is widely used in systems used
for process diagnosis. The algorithm described in this paper is
based on the K-means clustering algorithm (described in Alpaydin,
2010b) like a modeling approach described in Alves de Medeiros
et al. (2008). Different other approaches are using the fuzzy c-
means clustering (FCM, described in Alpaydin, 1998), a method
based on the concept of fuzzy sets and logic (described originally
in Zadeh, 1975). For example, fuzzy c-means clustering for fault
classification is reported in Mercurio et al. (2009) and Petković
et al. (2012) while it is used for process control in Kim and Kim
(2014).

The most widely used quantitative feature extraction pro-
cedures use statistical methods (e.g. PCA or PLS) for process
monitoring and fault detection, for which good review papers have
appeared recently, see Yin et al. (2012), Qin (2012) or MacGregor
and Cinar (2012). A recent improvement of the PLS method capable
of detecting small faults have been reported in Harrou et al. (2015).
However, these methods usually assume steady-state operation
condition of the system to be diagnosed, and fail during transient
operations. This fact and the need for diagnosing process systems
outside of their steady-state regime have motivated our research
to overcome this constraint.

The structure of this paper is as follows. First, basic notions
about qualitative event sequences (traces) and their representa-
tions are introduced. After that, the proposed diagnostic procedure
is described in detail, finally the diagnostic capabilities of the

algorithm are demonstrated using a simple and composite case
study (the Tennessee Eastman Challenge Process).

2. Qualitative events, traces and their distances

In case of a process system working under transient condi-
tions (i.e. it is not steady-state) its operation can be described as
sequences of events. These events refer to the actual values of mea-
sured quantities of the system at specific times, such as the values
of the system inputs including the possibly discrete valued (on/off
or open/close) states of the actuator elements (for example pumps
or valves) and the values of the system outputs which are the values
of sensors (such as level or pressure sensors).

2.1. Events with qualitative range spaces

System inputs and outputs are signals, i.e. time-dependent
quantities (as described in Hangos et al., 2004). Their range
space can naturally be discrete (such as open or close for a
two-state valve) or real (a positive real value for a pressure sig-
nal).

In case of uncertain values for a real valued measured signal, one
can describe the actual value using a qualitative range space, which
is a set of ordered mutually disjoint set of real intervals. The number
and the actual end-point set of these intervals (i.e. the resolution of
the qualitative range set) depend on the accuracy of the measured
signals and on the desired accuracy of the diagnostic results. In
order to be able to investigate the effect of the resolution on the
diagnostic accuracy, we  define and use two  different qualitative
range sets in this paper.

First we define a simple natural set of intervals that fits to
positive valued signals, such as temperatures or levels. One  may
associate verbal labels to the intervals following the normal opera-
tional value of the signal as follows: “N” stands for the normal range,
“0”, “L” and “H” denote the empty, low and high but acceptable val-
ues (still inside normal ranges), respectively, while “e−” and “e+”
refer to values which are outside nominal ranges, respectively. For-
mally, this basic qualitative range set is described in the following
way:

Q = {e−, 0, L, N, H, e+} (1)

It is possible to create a refined qualitative range set from the
qualitative set Q in Eq. (1) by placing a new qualitative value
between two already existing ones. Such refined qualitative range
set is given below

Qrefined = {e−, −0, 0, 0L, L, LN, N, NH, H, H+, e+} (2)

with the newly introduced labels “−0” small negative values, “0L”
very low, “LN” a bit low, “NH” a bit high, “H+” very high.

One can further refine the qualitative range set by adding new
intermediate values and achieve the range space of real values in
the limit.

The range space of binary discrete valued signals, such as the
status of a valve with two states, can be described by the range
space

B = {0, 1} (3)

where “0” can be associated to the closed and “1” to the opened
status.

The qualitative sets defined in Eqs. (1) and (2) can be also seen
as a boundary case of a fuzzy set (as defined in Zadeh, 1975) which
does not contain fuzziness, in this case every membership function
has a constant value for a defined interval and those intervals does
not overlap each other, like ordinary fuzzy sets do.
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