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a  b  s  t  r  a  c  t

This paper  presents  results  of  parameterisation  of  typical  input–output  relations  within  process  flow
sheet of  a  biodiesel  plant  and  assesses  parameterisation  accuracy.  A  variety  of  scenarios  were  consid-
ered:  1, 2,  6 and  11  input  variables  (such  as  feed  flow  rate  or a heater’s  operating  temperature)  were
changed  simultaneously,  3 domain  sizes  of  the  input  variables  were  considered  and  2  different  surro-
gates  (polynomial  and  high  dimensional  model  representation  (HDMR)  fitting)  were  used.  All considered
outputs  were  heat  duties  of  equipment  within  the plant.  All  surrogate  models  achieved  at  least  a reason-
able  fit regardless  of the  domain  size  and  number  of dimensions.  Global  sensitivity  analysis  with  respect
to 11  inputs  indicated  that  only  4  or  fewer  inputs  had significant  influence  on any  one output.  Interaction
terms  showed  only  minor  effects  in  all of  the  cases.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Every industrial actor strives towards better understanding
and, ultimately, optimisation of any and all of its activities. That
applies on each level beginning with workforce schedules and
individual pieces of machinery, through specific processes, end-
ing with entire plants. Traditionally the main objectives of such an
optimisation are minimising resource use and maximising profit.
However, as environmental concerns become ever more pressing
ecologically-focused targets such as reducing pollutants, creating
cleaner manufacturing processes or reducing carbon footprints rise
in prominence.

Those trends prompted significant academic and industrial
interest in the concepts of “sustainable development” (Brundtland
et al., 1987), “industrial ecology” (Hoffman, 1971; Watanabe, 1972;
Allenby, 2004, 2006) and “industrial symbiosis” (Chertow, 2000).
The latter concept brings together separate industries in a collective
approach to competitive advantage involving physical exchange
of materials, energy, water and by-products (Chertow, 2000).
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Ecological industrial development based thereon is often realised
as eco-industrial parks (EIPs).

An EIP is defined as an industrial park where businesses coop-
erate with each other and, at times, with the local community to
reduce waste and pollution, efficiently share resources (such as
information, materials, water, energy, infrastructure, and natural
resources), and minimise environmental impact while simulta-
neously increasing business success (Pan et al., 2015). An example
of an EIP exists in Kalundborg, Denmark where an exchange net-
work is centred around Asnæs Power Station, a 1500 MW coal-fired
power plant, and linked to the local community and several other
companies (Chertow, 2000; Desrochers, 2001). Sample exchanges
include selling excess steam from the plant to Novo Nordisk, a phar-
maceutical and enzyme manufacturer, and to Statoil power plant
or using extra heat to heat local homes and a nearby fish farm.
Also, one of the plant’s by-products, gypsum, is purchased by a
wallboard producer, helping to reduce the amount of necessary
open-pit mining (Ehrenfeld and Gertler, 1997).

Primary academic interest stems from EIPs’ ability to create
more sustainable industrial activities through the use of localised
symbiotic relationships (Boix et al., 2015). To this date a great
number of studies concerning various aspects of EIPs have been
conducted. Many of them probe methods suitable for optimal
design, focusing primarily on employing mathematical program-
ming to create exchange networks of materials, water and energy
connecting members of the EIP in question (Cimren et al., 2012;
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Fig. 1. Framework of EIP modelling based on Industry 4.0.
Adopted from Pan et al. (2015).

Kantor et al., 2012; Keckler and Allen, 1999; Liao et al., 2007;
Karlsson, 2011). Utility of such designs is evaluated by monitoring
environmental, social and economical impacts.

Holistic modelling of complex, highly interconnected networks
is a non-trivial and expensive task, especially for EIPs which include
numerous physical models of disparate processes. That is why
many studies apply mathematical optimisation to simplified mod-
els of individual aspects of the parks.

The limitations of this approach may  be overcome by exploi-
ting key features of the concept of Industry 4.0 (Pan et al., 2015):
creation of virtual copies of the physical world and the abil-
ity of industrial components to communicate with each other.
Those virtual copies could be surrogate models of physical mod-
els produced for a predefined range of inputs. Developing a virtual
system primarily based on surrogate models would significantly
reduce required computation time and storage space and allow for
dynamic modelling and studies otherwise impossible to conduct.
Fig. 1 presents a framework of EIP modelling based on Industry 4.0.

A surrogate model (or a metamodel) is an approximation of
experimental and/or simulation data designed to provide answers
when it is too expensive to directly measure the outcome of interest
(Forrester et al., 2008). Two key requirements thereof are reason-
able accuracy and significantly faster evaluation than the original
method. The models are used to:

• explore design space of a simulation or an experiment,
• calibrate predictive codes of limited accuracy and bridging mod-

els of varying fidelity,
• account for noise or missing data,
• gain insight into nature of the input-output relationship (data

mining, sensitivity analysis and parameter estimation).

Producing a surrogate model involves choosing a sampling plan
(an experimental design), choosing a type of model and fitting
the model to the gathered data. Numerous sampling and fitting
techniques are available as documented in a number of reviews.
Simpson et al. (2001) provides detailed reviews of data sampling
and metamodel generation techniques, including response sur-
faces, kriging, Taguchi approach, artificial neural networks and
inductive learning. It also discusses metrics for absolute and rel-
ative model assessment, including R2, residual plots and root mean
square error. An introduction to and analysis of linear regression
with a focus on generalised linear mixed models with many exam-
ples and case studies is provided by Ruppert et al. (2003).

A book by Forrester et al. (2008) puts the process of data
sampling and generating surrogate models into engineering per-
spective providing numerous case studies and MATLAB code to
perform associated calculations. It discusses response surfaces,
kriging, support vectors machines and radial basis functions. An
in-depth review of kriging, its application and new extensions are
provided by Kleijnen (2009). A review and assessment of vari-
ous sampling techniques is provided by Crary (2002). Reich and
Barai (1999) focuses on assessment of machine learning techniques,
artificial neural networks in particular, with case studies of mod-
elling marine propeller behaviour and corrosion data analysis. An
example of surrogate models bridging models of varying fidelity
is provided by Bakr et al. (2000) where a surrogate maps data
produced by fine and coarse physical models in order to accel-
erate optimisation of the fine model. Jin et al. (2003) assesses
applicability and accuracy of metamodels for optimisation under
uncertainty and reports promising results noting that only a small-
size analytical problem was considered. Surrogate models are
widely employed in engineering and science for space exploration
(Gough and Welch, 1994; Geyera and Schlueter, 2014), modelling
(Knill et al., 1999; Crary et al., 2000; Chen et al., 2014), sensitiv-
ity analysis (Azadi et al., 2014b; Chapman et al., 1994; Gough and
Welch, 1994; Menz et al., 2014; Jouhauda et al., 2007), parameter
estimation (Kastner et al., 2013; Bailleul et al., 2010; Braumann
et al., 2010a), optimisation in areas ranging from circuit design
through nanoparticle synthesis to flood monitoring (Bernardo et al.,
1992; Aslett et al., 1998; Roux and Bouchard, 2013). A number of
studies addressed application of surrogates to process flow sheet
models. Caballero and Grossmann (2008) replace the computation-
ally expensive subsystems of a flow sheet with Kriging surrogates
to speed up optimisation. Hasan et al. (2012, 2013), First et al.
(2014), Nuchitprasittichai and Cremaschi (2013), and Boukouvala
and Ierapetritou (2013) guide sampling of an expensive rigor-
ous model using Kriging surrogates to reduce computational time
required for optimisation. Fahmi and Cremaschi (2012) optimise a
design of a biodiesel production plant by replacing all subsystems
in a process flow sheet model with surrogate models based around
artificial neural networks (ANNs) and solving thus defined mixed-
integer non-linear problem. Henao and Maravelias (2011) propose
a systematic method for creating surrogate models of chemical
engineering systems and arranging them into a solvable network
(superstructure). The study focuses on ANNs as a base for their
surrogate models and describes how a superstructure can be opti-
mised. Kong et al. (2016) employ some of the concepts developed in
Henao and Maravelias (2011) for design optimisation of a chemical
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