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a  b  s  t  r  a  c  t

Continuous  flow  laboratory  reactors  are  typically  used  for the  development  of  kinetic  models  for  catalytic
reactions.  Sequential  model-based  design  of experiments  (MBDoE)  procedures  have  been  proposed  in
literature where  experiments  are optimally  designed  for discriminating  amongst  candidate  models  or
for improving  the  estimation  of  kinetic  parameters.  However,  the  effectiveness  of  these  procedures  is
strongly affected  by  the initial  model  uncertainty,  leading  to suboptimal  design  solutions  and  higher
number  of  experiments  to  be executed.  A  joint  model-based  design  of  experiments  (j-MBDoE)  technique,
based  on  multi-objective  optimization,  is  proposed  in  this  paper  for the  simultaneous  solution  of  the  dual
problem  of discriminating  among  competitive  kinetic  models  and  improving  the  estimation  of the  model
parameters.  The  effectiveness  of  the proposed  design  methodology  is  tested  and  discussed  through  a
simulated  case  study  for  the identification  of  kinetic  models  of  methanol  oxidation  over  silver  catalyst.

©  2016  The  Author(s).  Published  by  Elsevier  Ltd.  This  is  an  open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Model-based design of experiments (MBDoE) techniques repre-
sent a consolidated tool for the rapid assessment and identification
of fundamental kinetic models by optimally designing a set of
experiments yielding the most informative data to be used for
model identification (Franceschini and Macchietto, 2008). As per
conventional model building procedures (Asprey and Macchietto,
2002; Blau et al., 2008), experiments are optimally designed with
the following purposes: i) discriminating between structurally
identifiable candidate models, in order to identify the most suitable
model structure representing a system (Hunter and Reiner, 1965;
Buzzi-Ferraris and Forzatti, 1983, 1984; Schwaab et al., 2006);
ii) improving the precision of parameter estimates, once a suit-
able model structure is determined (Galvanin et al., 2007; Bandara
et al., 2009). Whilst the first objective is achieved based on the
maximisation of the discriminating power (i.e. a function for quan-
titatively evaluating the deviation between model predictions), the
second is based on the maximisation of the expected informa-
tion, given as a measurement function of the Fisher Information
Matrix (FIM), allowing to increase the confidence on parameter
estimation. The sequential iteration of steps i) (MBDoE for model
discrimination) and ii) (MBDoE for improving parameter precision)
leads to the detection of the best model structure and to a sta-
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tistically reliable estimation of the model parameters, minimising
the experimental trials required by the model identification task.
This optimal design approach has been recently applied also to the
design of steady-state (Reizman and Jensen, 2012) as well as tran-
sient experiments (Schaber et al., 2014) for the development of
kinetic models in microfluidic devices, underlining the potential of
MBDoE techniques in the identification of reaction kinetics. Nev-
ertheless, the conventional sequential MBDoE approach used for
model building is affected by several limitations due to the intrin-
sic nature of the optimal design problem. In fact, at the beginning
of the MBDoE procedure, when both the model structure and the
set of model parameters are unknown, the design for model dis-
crimination could be highly ineffective for discriminating amongst
candidate kinetic models when the optimally designed experimen-
tal conditions are applied to the actual system. Furthermore, due to
model uncertainty, the planned discriminating experiments could
provide a very low level of information for the estimation of the
kinetic parameters, and this fact could severely affect the reliabil-
ity of model predictions. Finally, the need of sequentially performing
the design for model discrimination and the design for improving
parameter precision procedures leads to the execution of a large
number of experiments for obtaining reliable kinetics, prolonging
time and effort required by the entire modelling activity.

In order to overcome these issues, Hill et al., 1968 introduced
the concept of joint experimental design, i.e. a design for both
establishing the form of an adequate model representing a system
(i.e. the model structure) and to obtain a precise estimation of its set
of parameters. A multi-objective design criterion was proposed and
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Nomenclature

General symbols
AIC Akaike information criterion
ci Species concentration [mol/m3]
D Design space
F Flow rate [mL/min]
N Number of experimental points
Nexp Number of experiments
NM Number of candidate models
Nreaz Number of reactions
nsp Number of sampling points
Nx Number of state variables
Ny Number of measured responses
N� Number of parameters
nϕ Number of design variables
P Pressure [bar]
P0
i

Preliminary probability of the i-th model to be the
“true” model

Pi Probability of the i-th model to be the “true” model
RFIij Relative Fisher information of the i-th experiment

for the j-th model
rj Rate of the j-th reaction
sij ij-th element of the Ny × Ny matrix of measurement

error
t Time [s]
tsw
i

i-th switching time
T Temperature [K]
ti t-value for the i-th model paramater
vz Speed of fluid flow [m/s]
v�
i

Variance of the i-th model parameter
yi i-th measured response
ŷi i-th predicted response
wMDM,N MN-th element of the selection matrix WMD for

model discrimination
wPE
j

j-th element of vector WPE for improving parameter
estimation

z Axial coordinate [m]

Vectors and Matrices [dimension]
H� Dynamic information matrix [N� × N�]
H0
� Preliminary information matrix [N� × N�]

tsp Vector of sampling points [nsp]
y Measurements vector [Ny]
ŷ Vector of estimated responses [Ny]
y0 Vector of initial conditions on measured variables

[Ny]
u Vector of manipulated inputs [Nu]
V� Variance-covariance matrix of model parameters

[N� × N�]
u Vector of manipulated inputs [Nu]
V� Variance-covariance matrix of model parameters

[N� × N�]
x Vector of state variables [Nx]
x0 Vector of initial states [Nx]
ẋ Vector of derivatives on state variables [Nx]
� Design vector [nϕ]
�opt Optimal design vector [nϕ]
�MD Optimal design vector for model discrimination [nϕ]
�PE Optimal design vector for improving parameter esti-

mation [n�]
�JD Optimal design vector for joint design [nϕ]
� Vector of values of true model parameters for the

subject/system [N�]

�̂ Vector of estimated values of model parameters [N�]
�̂0 Vector of preliminary estimated values of model

parameters [N�]
WMD Selection matrix for model discrimination

[NM × NM]
WPE Selection vector for improving parameter estima-

tion [NM]

Greek letters
�i i-th transient time between consecutive experi-

ments
�yi Standard deviation of the i-th measured response
�ij Stoichiometric coefficient of thei-th species in the

j-th reaction
�i i-th model parameter
� Experiment duration
� V� measurement function (design criterion)
�2
i

Chi-square statistics
�2
Ref

Reference chi-square

�MD Design objective function for model discrimination
(discriminating power)

�PE Design objective function for improving parameter
estimation

� Epsilon variable for multi-objective j-MBDoE for-
mulation

�MIN Minimum epsilon value
�MAX Maximum epsilon value

Acronyms
AIC Akaike information criterion
DAEs Differential and algebraic equations system
FIM Fisher information matrix
j-MBDoE Joint model-Based design of experiments
MBDoE Model-based design of experiments
MD Model discrimination
NLP Nonlinear programming problem
PE Parameter estimation
PFR Plug flow reactor
SQP Sequential quadratic programming

applied to several case studies over a predefined grid of experi-
mental design points. More recently Petrov et al. (1991) and Akiti
et al. (1997) applied a joint design approach for the investigation
of reaction kinetics. However, in both studies the design objective
functions were evaluated on a grid of experimental conditions and
no direct multi-objective optimisation algorithm was applied for
the design of the optimal experimental conditions.

In this paper, a joint model-based design of experiments (j-
MBDoE) procedure is proposed for the development of kinetic
models for simultaneously discriminating amongst candidate
kinetic models and improving the estimation of kinetic parameters.
Preliminary data from the reactors is used for model discrimi-
nation and to screen the most informative regions of the design
space. According to j-MBDoE, trade-off solutions between met-
rics of Fisher information and discriminating power are computed
using a multi-objective optimisation algorithm and are used to
design a sequence of steady-state experiments. The effectiveness
of the proposed design strategy is tested and critically discussed
through a case study for the identification of kinetic models of
methanol oxidation over silver catalyst, where the effectiveness
of different optimal design configurations is compared and quan-
titatively assessed. The rest of the paper is organised as follows.
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