FISEVIER

Contents lists available at ScienceDirect

Electrochemistry Communications

journal homepage: www.elsevier.com/locate/elecom

Effect of atomic-layer-deposited TiO₂ on carbon-supported Ni catalysts for electrocatalytic glycerol oxidation in alkaline media

Jisu Han^{a,b,1}, Youngmin Kim^{a,1}, Hyun Woo Kim^c, David H.K. Jackson^d, Daewon Lee^a, Hyunju Chang^c, Ho-Jeong Chae^{a,e}, Kwan-Young Lee^b, Hyung Ju Kim^{a,e,*}

- ^a Carbon Resources Institute, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
- ^b Department of Chemical & Biological Engineering, Korea University, Seoul 02841, South Korea
- ^c Center for Molecular Modeling and Simulation, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
- ^d Materials Science Program, University of Wisconsin-, Madison, WI 53706, USA
- e Department of Green Chemistry & Biotechnology, University of Science and Technology, Daejeon 34113, South Korea

ARTICLE INFO

Keywords: Nickel Titanium dioxide Atomic layer deposition Electrocatalytic oxidation Glycerol Alkaline electrolyte

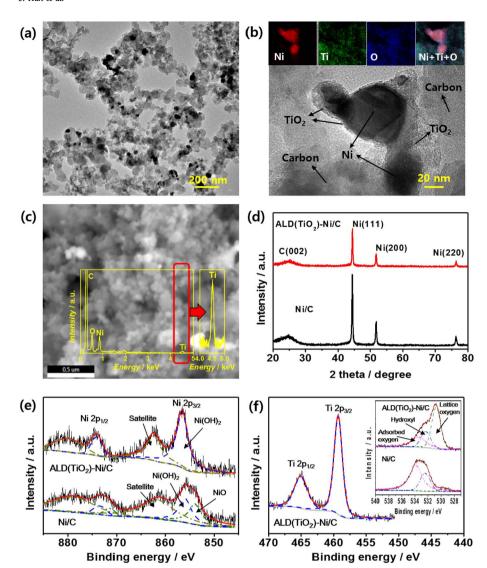
ABSTRACT

Thin TiO_2 layers were deposited onto a carbon-supported Ni catalyst (Ni/C) through atomic layer deposition (ALD) and the resulting TiO_2 -coated Ni/C (ALD(TiO_2)-Ni/C) was utilized for electrochemical glycerol oxidation in alkaline media. X-ray photoelectron spectroscopy analysis demonstrated that the Ni surface phase of ALD (TiO_2)-Ni/C mainly consisted of Ni(OH)₂ while that of uncoated Ni/C was a mixed phase of NiO and Ni(OH)₂. The ALD(TiO_2)-Ni/C exhibited electrocatalytic activity at least 2.4 times higher than that of Ni/C. Density functional theory calculations were used to investigate how the modified Ni surface with the TiO_2 coating affects the adsorption/desorption of glycerol.

1. Introduction

Atomic Layer Deposition (ALD) has been used to effectively control the preparation of materials at the atomic scale [1-4] and can be used to synthesize new types of atomically-controlled catalytic materials. It has been shown that an ALD coating of Al₂O₃ or TiO₂ can prevent dissolution of base metal nanoparticles such as Cu or Co in aqueous phase catalytic reactions [5,6]. Previous studies have also demonstrated that coating metal oxides by ALD can improve the longevity of semiconductor photoelectrodes and increase their activity in photoelectrochemical applications [7-9]. We recently reported that an ALD TiO₂ coating can enhance the catalytic activity and stability of non-preciousmetal-based catalysts for electrochemical water oxidation [10]. TiO₂ was chosen as it is a well-known material having high stability under electrochemical conditions. In addition, this ALD technique could be used to design atomically-controlled electrocatalysts with increased activity or selectivity for electrocatalytic alcohol oxidation using e.g. biomass-derived ethanol or glycerol.

Herein, we report that a thin TiO₂ coating on Ni/C by ALD strongly affects the electrocatalytic activity of Ni/C toward glycerol electro-oxidation in an alkaline medium. The ALD(TiO₂)-Ni/C exhibits high activity and stability, and both are superior to the activity and stability


of uncoated Ni/C. The enhanced electrocatalytic performance of ALD (TiO_2)-Ni/C can be explained by the TiO_2 coating modifying the surface oxidation state of nickel, thus affecting the adsorption/desorption of glycerol.

2. Experimental

 ${
m TiO_2}$ layers were deposited on commercial Ni/C (20%, Premetek) by the ALD technique using a similar method to that described in our previous work [10]. High-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), inductively coupled plasma-optical emission spectrometry (ICP-OES), X-ray diffraction (XRD), and X-ray photo-electron spectroscopy (XPS) were used to characterize the prepared samples. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), and chronoamperometry (CA) were carried out in a three-electrode system consisting of a Hg/HgO (MMO, 1 M KOH) and a Pt wire as the reference and counter electrodes, respectively; glassy carbon (0.07 cm²) or carbon paper (2 cm²) was used as the working electrode. The catalysts were blended with a Nafion solution (catalyst:Nafion = 90:10 wt %) and loaded onto the glassy carbon or carbon paper (0.65 mg cm²²). The electrochemical impedance spectra (EIS) were measured under a

^{*} Corresponding author at: Carbon Resources Institute, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea. E-mail address: hjkim@krict.re.kr (H.J. Kim).

¹ These two authors contributed equally to this work.

Fig. 1. (a) TEM, (b) HRTEM, and (c) SEM images of ALD (TiO₂)-Ni/C. Inset: EDS spectrum. (d) XRD patterns of Ni/C and ALD(TiO₂)-Ni/C. XPS spectra of Ni/C and ALD(TiO₂)-Ni/C in (e) the Ni 2p and (f) the Ti 2p regions. Inset: XPS spectra in the O 1 s region.

constant voltage of 0.6 V at frequencies from 100 kHZ to 0.1 Hz with an AC amplitude of 5 mV. After the electrochemical reaction with the carbon paper electrode, each phase of the reaction mixture was analyzed with a Waters 2535 high performance liquid chromatograph (HPLC) equipped with a RI detector and a UV–vis detector (220 nm). The column used was a Biorad Aminex HPX-87H sugar column. All density functional theory (DFT) calculations were performed using the Vienna *ab initio* simulation package (VASP) [11,12]. Computational settings not listed here were the same as in our previous study [13]. We modeled oxidized Ni (111) surfaces by subtracting electrons without changing the lattice parameters of the optimized neutral Ni (111) surface (14.6 \times 14.6 \times 27.9 Å 3). The solvation effect was implicitly considered within the VASPsol code [14]. Atomic partial charges were estimated from a Bader analysis [15–16].

3. Results and discussion

Fig. 1a and b show TEM and HRTEM images of the prepared ALD (TiO₂)-Ni/C which has Ni particles 29 ± 8 nm in size distributed on the carbon support. The elemental maps of Ni, Ti, and O revealed that both Ti and O were evenly deposited on the surface of Ni/C (inset of Fig. 1b). The EDS spectrum from SEM also confirms the existence of Ti in the ALD(TiO₂)-Ni/C sample (Fig. 1c). The mass fraction of Ti in the sample determined by ICP-OES was approximately 7 wt% (TiO₂ thickness measured by XPS [17]: ca. 2.3 nm). The XRD patterns reveal that both

Ni/C and ALD(TiO₂)-Ni/C (Fig. 1d) have the characteristic peaks of a crystalline face-centered-cubic (fcc) phase of Ni. The broad peaks at ca. 25 °C correspond to the hexagonal structures of the carbon support. For the ALD(TiO2)-Ni/C, we could not find any diffraction peak for the crystalline TiO2 phase, implying that the TiO2 grown on the Ni/C surface is amorphous in this sample. The HRTEM image in Fig. 1b also shows that amorphous ${\rm TiO_2}$ forms a thin film over the nickel particles during the ALD process. Fig. 1e shows the Ni 2p region of the XPS spectra for Ni/C and ALD(TiO2)-Ni/C. The Ni 2p3/2 core level of Ni/C could be deconvoluted into two contributions at 854.0 eV and 856.0 eV, attributable to NiO and Ni(OH)2, as well as a satellite peak at 861.7 eV [18]. In the case of ALD(TiO₂)-Ni/C, the NiO contribution is negligible and the surface layer of Ni is mainly present in the form of Ni(OH)2, indicating the formation of Ni(OH)2 due to the change in the nature of surface Ni after TiO2 ALD deposition. The Ti 2p XPS spectrum of the ALD(TiO₂)-Ni/C is shown in Fig. 2f. The peak location of Ti 2p_{3/2} at 459.3 eV and spin orbit splitting between Ti $2p_{3/2}$ and Ti $2p_{1/2}$ peaks of 5.8 eV are consistent with the reported values of electron orbitals for TiO₂ (Ti⁴⁺) [19]. The O 1 s spectra (inset of Fig. 2f) can be fitted with three peaks at binding energies of ca. 530.8, 532.4, and 533.5 eV, which could be assigned to lattice oxygen in TiO2, a surface hydroxyl group, and adsorbed oxygen, respectively, further confirming the formation of TiO₂ in the ALD(TiO₂)-Ni/C [18].

CV tests for the ALD(TiO₂)-Ni/C and Ni/C in 0.1 M KOH without glycerol were performed to probe the electrochemical interaction

Download English Version:

https://daneshyari.com/en/article/6469515

Download Persian Version:

https://daneshyari.com/article/6469515

<u>Daneshyari.com</u>