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A B S T R A C T

This paper describes the use of a frequency domain, finite-difference scheme to simulate the impedance
spectra of diffusion in porous microstructures. Both open and closed systems are investigated for a range
of ideal geometries, as well as some randomly generated synthetic volumes and tomographically derived
microstructural data. In many cases, the spectra deviate significantly from the conventional Warburg-
type elements typically used to represent diffusion in equivalent circuit analysis. A key finding is that
certain microstructures show multiple peaks in the complex plane, which may be misinterpreted as
separate electrochemical processes in real impedance data. This is relevant to battery electrode design as
the techniques for nano-scale fabrication become more widespread. This simulation tool is provided as
an open-source MatLab application and is freely available online as part of the TauFactor platform.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Electrochemical impedance spectroscopy (EIS) is perhaps the
most widely used technique for characterising electrochemical
devices [1]. Either by fitting equivalent circuit models in the
complex plane or by analysis of the distribution of relaxation times
(DRT), it is possible to investigate and decouple the relative
contributions to the impedance made by the various physical and
electrochemical processes occurring in a cell [2].

Although cell electrodes are inherently three dimensional
objects, the majority of elements in equivalent circuits (such as
resistors, inductors and capacitors) are zero dimensional. Warburg
elements are commonly used to model idealised one dimensional
diffusion under a variety of boundary constraints. It is possible to
find analytical solutions, or reasonable approximations, to many
combinations of these boundary scenarios, such as Dirichlet (i.e.,
specified concentration), Neumann (i.e., specified flux) and semi-
infinite [3]. This allows conventional fitting algorithms to
incorporate Warburg elements, without the additional computa-
tional cost incurred by solving these domains numerically for each
set of parameters.

However, the pseudo-1D nature of Warburg elements requires
that the intricate details of real 3D microstructures must be
summarised with only a few bulk parameters, such as the porosity
and tortuosity factor. The tortuosity factor is a measure of the
resistance to diffusive transport caused by convolutions in the flow
paths [4]. As is shown later in this article, structures with very
different morphologies can have identical tortuosity factors and
porosities. However, analysing structures across a range of
stimulation frequencies, as well as the usual steady-state analysis,
enables some additional features of interest to be extracted that
may be relevant to performance. Moreover, when analysing
impedance data, it would be of interest to know whether the
microstructure is responsible for deviations in the spectra away
from the conventional Warburg model [5].

The effect of pore geometry on impedance was first modelled in
detail in a 1976 paper by Keiser et al. [6], following on closely from
the work of De Levie [7], where a pseudo-3D numerical model was
used to generate impedance spectra for a range of closed pore
geometries. The model uses a simplified transmission line
assemblage of series resistors and branching capacitors, with
the coefficients representing spatial distribution and axi-symme-
try. The original paper is in German, but the concept was
summarised for a wider audience in a review of EIS methods by
Barsoukov and Macdonald [2], which also reframes it in the
context of penetration depths. Raistrick [8] points out the
limitations of the pseudo-3D approach and Eloot et al. [9] do* Corresponding author.
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question the accuracy and relevance of Keiser’s result; however, as
these concerns are due in part to the assumptions required to make
the calculation computationally feasible under the constraints of
the day, it is reasonable to expect that the general trends would still
be valid. Although over 40 years have passed since the Keiser paper,
the authors of this work were unable to find an instance where the
numerical results were directly used in the analysis of an EIS
spectrum. This is likely due to both the unavailability of
microstructural data and the computational expense of the
simulation.

However, despite the uncertainty surrounding the link between
EIS spectra and the geometry of microstructures, very many papers
have cited Keiser, as well as its subsequent mentions in books and
articles by Lasia [10–12], as a possible explanation for distortions in
impedance spectra. Malko et al. [13] used EIS to investigate PEM
carbon catalyst optimisation and attributed a deviation from the
expected 45� slope to the pore broadening/narrowing phenomena
discussed by Keiser. Noack et al. [14] also cited Keiser to explain
variation in EIS results between samples of graphite felt electrodes.
González-Buch et al. [15] used SEM image data to show that the
templated pores in their metallic cathodes were narrowing cones,
which lead them to conclude that their distorted EIS spectra could
be explained by Keiser’s findings. A study by Cericola and Spahr
[16] analysed the effect of particle size, shape, and orientation on
the performance of graphite electrodes and used Keiser’s results to
interpret a deviation from the expected 90� slope in the low
frequency region of a blocked electrode. The degradation of silicon
electrodes was investigated by Radvanyi et al. [17] and once again,
they associate evolution of features in the EIS data to changes in the
geometry of the system. A study by Wu et al. [18] on supercapacitor
electrodes found an additional “arc-shaped” feature in their EIS
data which they conclude, citing Keiser, to be the result of transport
processes in “orbicular pores”, after they systematically rule out
other potential causes. Hitz and Lasia modelled “pear-shaped”
pores similar to those investigated by Keiser and also observed a
semi-cricle at high frequency, rather than the expected 45� slope
[11]. As a final remark, Zhang et al. [19] highlighted the importance
of the pore geometry for designing advanced supercapacitor
electrodes, acknowledging that capturing non-uniform ion diffu-
sion is crucial for high power performance. To clarify the cause of
variation within the EIS spectra in each of the above cases, the
material microstructures must be mapped in 3D and explored.

Recent advances in computed tomography (CT) have allowed
the details of porous microstructures to be captured at high
resolution [20–23]. This microstructural data is typically stored as
cuboid voxels, each containing a grayscale value related to the local
density or atomic mass of the sample, depending on the technique
used. A segmentation approach must typically then be employed
to convert this grayscale data into a labelled volume (although
segmentation-free transport simulations are also possible [24]),
representing the distribution of the various phases. As demon-
strated in many recent studies [25–28], the segmented geometry
data can then be used to calculate various microstructural
parameters, such as the volume fractions, surface areas, triple
phase boundary densities and tortuosity factors; all of which are of
interest when trying to predict the performance of, for example, a
porous electrochemical electrode

This article presents the implementation of a frequency domain
finite-difference solver, suitable for segmented tomographic data,
applied to calculate the diffusive impedance spectra of porous
materials. First, an investigation of some idealised geometries is
presented to aid the intuitive interpretation of the possible effects
by analysing several simple open and closed systems. Following
this, the method is applied to some real geometries, derived from
tomographic data.

2. Method

2.1. Simulation

The solver used in this study is based on the finite-difference
approach implemented in the open-source TauFactor platform
recently released by the authors [24]. TauFactor was originally
developed for quantifying diffusive tortuosity factors from
segmented tomographic data by solving the steady-state diffusion
equation between a pair of parallel Dirichlet boundaries. Although
it is possible in principle to model a sinusoidal stimulation at one of
the boundaries in the time domain, the computational cost would
be prohibitive. In this study, the system was transformed into the
frequency domain, where a sinusoidal stimulation is once again
represented as a Dirichlet boundary condition. This approach
allows the various optimization techniques already implemented
in the TauFactor platform, such as over-relaxation, checkerboard-
ing and vectorisation, to be used in the frequency domain,
massively accelerating convergence (for more details, see [24]).

The system of equations in sys. (1) captures this steady-state
diffusion problem in the frequency domain, including the fixed
value (Dirichlet) conditions imposed at two parallel boundaries,
where Q = (0, Lx) � (0, Ly) � (0, Lz) is a cuboid in R3 and V � Q is the
region of a porous medium inside Q where diffusion occurs. T, I and
B are two-dimensional subsets of Q (i.e., Top, Interfacial and
Bottom), such that @V = T [ I [ B and @Vjz¼Lz ¼ B, @Vjz¼0 ¼ T,
@Vj0<z<Lz ¼ I. The complex distribution of the diffusing species
through the porous medium V is then modelled by the solution to

r2Ĉ � iv
D
Ĉ ¼ 0; in V;

Ĉ ¼ 0; on T;
rĈ�n ¼ 0; on I;
Ĉ ¼ 1; on B;

8>>>><
>>>>:

ð1Þ

where n is the outward pointing unit normal to V; Ĉ is the
complex concentration of the diffusing species; i is the imaginary
unit; D is the intrinsic diffusivity of transporting phase (set to 1 in
all cases); and v is the frequency of the boundary stimulation,
which is changed to calculate each point in a spectrum.

In the case where the top boundary is closed, the condition at
boundary T simply becomes the same as boundary I. In all cases,
convergence was measured by the stability of the complex
impedance measured at the stimulated boundary, B.

In each simulation, a characteristic frequency, vc, was defined,
around which the frequency range [vc � 2�4, vc � 211] was
investigated.

vc ¼ D

L2
ð2Þ

where, for open systems, L is the length of the control volume (CV)
in the direction normal to the stimulated surface and, for closed
systems, L is equal to the maximum penetration distance from the
stimulated surface to the tip of the longest pore path.

For each frequency, the impedance Z was calculated as the ratio
between the amplitude of the concentration stimulus (1 in all
cases) and the complex diffusion flux at the inlet boundary, and
then normalised to ~Z for ease of comparison by using Eq. (3).

Z
� ¼ Z

AD
L

ð3Þ

where, for open systems, A is the total area of the CV boundary
normal to the direction of flow and, for closed systems, A is the
“mean accessible area”, which is defined as the algebraic mean area
accessible to diffusion at each discrete depth into the pore
network. Using this formulation also means that the low frequency
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