Accepted Manuscript

Title: Hierarchy concomitant in situ stable iron(II)—carbon source manipulation using ferrocenecarboxylic acid for hydrothermal synthesis of LiFePO₄ as high-capacity battery cathode

Authors: Hoxin Yen, Rupesh Rohan, Chun-Yu Chiou, Chang-Ju Hsieh, Satish Bolloju, Chia-Chen Li, Yi-Fei Yang, Chi-Wi Ong, Jyh-Tsung Lee

PII: S0013-4686(17)31937-0

DOI: http://dx.doi.org/10.1016/j.electacta.2017.09.065

Reference: EA 30264

To appear in: Electrochimica Acta

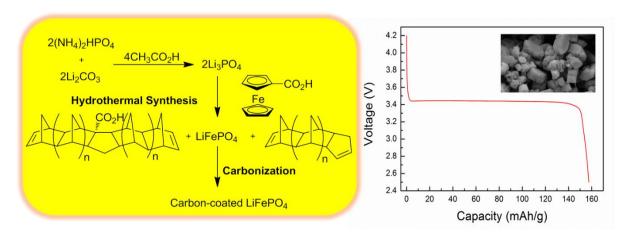
Received date: 31-5-2017 Revised date: 8-9-2017 Accepted date: 12-9-2017

Please cite this article as: Hoxin Yen, Rupesh Rohan, Chun-Yu Chiou, Chang-Ju Hsieh, Satish Bolloju, Chia-Chen Li, Yi-Fei Yang, Chi-Wi Ong, Jyh-Tsung Lee, Hierarchy concomitant in situ stable iron(II)—carbon source manipulation using ferrocenecarboxylic acid for hydrothermal synthesis of LiFePO4 as high-capacity battery cathode, Electrochimica Actahttp://dx.doi.org/10.1016/j.electacta.2017.09.065

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Hierarchy concomitant in situ stable iron(II)-carbon source manipulation using ferrocenecarboxylic acid for hydrothermal synthesis of LiFePO₄ as high-capacity battery cathode


Hoxin Yen[†], Rupesh Rohan[†], Chun-Yu Chiou[†], Chang-Ju Hsieh[†], Satish Bolloju[†], Chia-Chen Li[‡], Yi-Fei Yang[†], Chi-Wi Ong[†], Jyh-Tsung Lee^{*,†,§}

[†]Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

[‡]Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

[§]Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan

Graphical Abstract

Highlights

- Fe³⁺ Impurities free LiFePO₄ has been synthesized via hydrothermal method using ferrocene carboxylic acid as an iron source.
- Electron paramagnetic resonance spectroscopy has been used for determination of Fe³⁺ concentration in LiFePO₄.
- The LiFePO₄ electrode demonstrates good electrochemical performance.

Download English Version:

https://daneshyari.com/en/article/6470090

Download Persian Version:

https://daneshyari.com/article/6470090

<u>Daneshyari.com</u>