Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta

Research Paper

CoS₂ nanoneedle array on Ti mesh: A stable and efficient bifunctional electrocatalyst for urea-assisted electrolytic hydrogen production

Shuang Wei^{a,1}, Xiaoxia Wang^{a,1}, Jianmei Wang^c, Xuping Sun^{b,*}, Liang Cui^a, Wenrong Yang^c, Yiwei Zheng^a, Jingquan Liu^{a,*}

^a Center for Micro/Nano Luminescent and Electrochemical Materials, College of Materials Science and Engineering, Institute for Graphene Applied Technology

Innovation, Qingdao University, Qingdao 266071, China

^b College of Chemistry, Sichuan University, Chengdu 610064, China

^c School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3217, Australia

ARTICLE INFO

Article history: Received 14 April 2017 Received in revised form 26 May 2017 Accepted 12 June 2017 Available online 13 June 2017

Keywords: CoS₂ nanoneedle array Urea electrolysis Sulfuration Bifunctional catalyst

ABSTRACT

In this work, we report that uniformly CoS_2 nanoneedle array grown on Ti mesh (CoS_2 NA/Ti) behaves as a stable and efficient bifunctional electrocatalyst for urea-assisted electrolytic hydrogen production via overall urea splitting. As a non-noble metal electrocatalyst, CoS_2 NA/Ti exhibited excellent urea oxidation reaction (UOR) and hydrogen evolution reaction (HER) catalytic activity in 1.0 M KOH with 0.3 M urea solution. Only a cell voltage of 1.59 V is required to achieve a current density of 10 mA cm⁻² for full urea splitting in 1.0 M KOH with 0.3 M urea.

© 2017 Published by Elsevier Ltd.

1. Introduction

Water electrolysis is a consolidated process to produce highly pure hydrogen, which is an ideal choice to replace fossil fuels [1–3]. However, the anodic oxygen evolution reaction (OER) is still the major bottleneck in the overall water splitting process [4,5] and needs much higher activation energy for O-O bond formation [6– 8]. Replacing water with other more readily oxidizable species is a promising way for more energy-efficient electrolytic hydrogen production. Urea is an electro-oxidative species with the advantages of cheap, non-toxic and renewable [9–12]. All these advantages make anodic urea oxidation reaction (UOR) an ideal alternative for OER.

Although noble metal-based catalysts such as Pt/C, RuO_2 or IrO_2 can effectively reduce the energy barrier to promote the activity for UOR and hydrogen evolution reaction (HER) of urea electrolysis, however, their scarcity and high cost severely impede the applications [10,13–15]. Thus, there is an urgent call for alternative urea electrolysis catalysts based on the earth-abundant elements. In recent years, transition metal based composites, such as COP_2

¹ These authors contributed equally to this work.

[16], Co-Mo-S [17], NiCo₂S₄ [18], Co(OH)₂@PANI [19] have been largely explored because of their good catalytic activity and low preparation cost [20,21]. Among these catalysts, cobalt disulfide (CoS₂) outperforms the most transition metal dichalcogenides due to its excellent metallic nature and high catalytic activity, making it a uniquely superior electrocatalyst [22–24]. In addition, long-term stability of CoS₂ was observed in both acidic and alkaline operating environments [23,25]. However, the development of efficient CoS₂ based bifunctional catalysts towards both UOR and HER for an energy-saving electrolytic hydrogen production has not been reported yet.

Herein, we immobilized 1D CoS₂ nanoneedle array on Ti mesh (denoted as CoS₂ NA/Ti) by a facile hydrothermal treatment, followed by a sulfuration process under N₂. The 1D morphology of CoS₂ could expose abundant surface active sites to accelerate the electrolyte transportation [26,27] and facilitate the release of N₂ and CO₂ at anode and H₂ at cathode. The stable interaction between the Ti mesh and CoS₂ nanoneedle array could facilitate the electron transport [28,29] and prevent CoS₂ agglomeration during the urea electrolysis process [20,24,30]. As a result, the electrocatalytic performance of CoS₂ NA/Ti can be achieved at a cell voltage of only 1.59 V to generate a current density of 10 mA cm⁻² for full urea splitting in 1.0 M KOH with 0.3 M urea.

^{*} Corresponding authors. Tel.:+86 532 83780128.

E-mail addresses: sunxp@scu.edu.cn (X. Sun), jliu@qdu.edu.cn (J. Liu).

2. Experimental

2.1. Materials

Cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O, AR), sublimed sulfur (S, CP), ammonium fluoride (NH₄F, AR) and urea (H₂NCONH₂, AR) were received from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). Ti mesh was bought from Hang Xu Company in Hebei province (Hebei, China). Deionized water was utilized for preparation of all solutions. All reagents were analytical grade and utilized without further purification. Pt/C catalyst was purchased from Shanghai Macklin Biochemical Co., Ltd (Shanghai, China).

2.2. Preparation of the cleaned Ti mesh

A piece of Ti mesh $(2 \times 3 \text{ cm}^2)$ was washed with HCl at $30 \degree$ C for 15 min, then rinsed with ethanol and deionized water several times to ensure Ti mesh surface was clean enough for subsequent use.

2.3. Synthesis of CoS₂ NA/Ti mesh

First, the precursor of $Co(OH)_2$ NA/Ti was prepared by one step hydrothermal method. Typically, 1.75 g (6 mmol) of Co

CoS, NA/Ti

 $(NO_3)_2 \cdot 6H_2O$, 0.15 g (4 mmol) of NH_4F and 1.20 g (20 mmol) of urea were completely dissolved in 40 mL deionized water, the mixed solution was stirred at room temperature to afford a uniform solution. After that, this solution was transferred into a 50 mL Teflon-lined stainless-steel autoclave. The cleaned Ti mesh $(2 \times 3 \text{ cm}^2)$ was vertically placed against the wall of Teflon-liner, and maintained at 110 °C for 8 h in a vacuum oven. The Co(OH)₂ NA/ Ti was rinsed several times by deionized water and ethanol, and dried at 60 °C. Finally, the as-obtained Co(OH)₂ NA/Ti precursor was sulfurated by high temperature sulfuration method. A combustion boat loaded with 1.00 g sublimed sulfur powder was placed upstream in a tube furnace, a combustion boat with Co (OH)₂ NA/Ti precursor was placed in the downstream of tube furnace. This sample was heated to 400 °C (heating rate: 5 °C min^{-1}) for 2 h under N₂ atmosphere to afford the CoS₂ NA/Ti mesh. And the loading of CoS_2 NA on Ti mesh was 1.48 mg cm⁻².

2.4. Synthesis of Pt/C and RuO₂ loaded electrodes

 RuO_2 was synthesized as below. 0.01 mol $RuCl_3 \cdot 3H_2O$ was dissolved into 100 mL deionized water and heated at 100 °C for 10 min, 30 mL 1.0 M KOH solution was then added for adjusting the pH value to 11. The resulting mixture was maintained at 100 °C for 45 min under stirring. The precipitate was centrifuged and rinsed several times with deionized water and ethanol to get rid of the

Fig. 1. (A) XRD patterns of Co(OH)₂ NA/Ti and CoS₂ NA/Ti. SEM images of (B) bare Ti mesh, (C) Co(OH)₂ NA/Ti, and (D) CoS₂ NA/Ti. (E) EDX elemental mapping of Co and S. HRTEM images of CoS₂ NA/Ti (F and G). (H) SAED pattern of CoS₂ NA/Ti. The inset of Fig. 1C represents the magnified SEM image of CoS₂ NA/Ti.

Download English Version:

https://daneshyari.com/en/article/6470606

Download Persian Version:

https://daneshyari.com/article/6470606

Daneshyari.com