Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta

A superior Li₂SiO₃-Composited LiNi_{0.5}Mn_{1.5}O₄ Cathode for High-Voltage and High-Performance Lithium-ion Batteries

Yunlong Deng^a, Jirong Mou^a, Huali Wu^a, Na Jiang^a, Qiaoji Zheng^a, Kwok Ho Lam^b, Chenggang Xu^a, Dunmin Lin^{a,*}

^a College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China ^b Department of Electrical Engineering, the Hong Kong Polytechnic University Hunghom, Kowloon, Hong Kong

ARTICLE INFO

Article history: Received 27 February 2017 Accepted 8 March 2017 Available online 10 March 2017

ABSTRACT

In this work, Li₂SiO₃, a layer-structured fast Li⁺-ion conductor with three-dimensional Li⁺ paths, has been firstly introduced into LiNi0.5Mn15O4 to form novel cathode composites of (1-x)LiNi0.5Mn15O4·xLi2SiO3 via a citric acid-assisted sol-gel method. The effects of Li₂SiO₃ on the phase structure, morphology and electrochemical performance of the materials were investigated. As x increases, the structure and electrochemical properties of the materials are tailored. The cathode material with x=0.10 delivers ultrahigh initial discharge capacity \sim 150.3 mAh g⁻¹, which is 24.4% larger than that of the pristine $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_4$ (120.8 mAh g⁻¹). The Li₂SiO₃-composited LiNi_{0.5}Mn_{1.5}O₄ materials present an enhanced cycling stability, better rate performance and lower charge transfer resistance. These excellent electrochemical properties indicate that the compositing of fast Li⁺-ion conductor Li₂SiO₃ is an effective method to enhance the electrochemical performance of LiNi0.5Mn1.5O4-based cathode materials.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Lithium-ion batteries have been extensively studied and used as power sources, due to their high power and energy density [1–5]. To achieve the higher energy density and good safety of lithium-ion batteries, the high-voltage spinel cathode materials of $LiM_xMn_{2-x}O_4$ (M = Co, Ni) have been extensively studied [6,7]. Thus, it is the urgent need to fabricate new cathode materials for LIBs with high energy density and high capacity [8–12]. Among these spinel cathode materials, LiNi_{0.5}Mn_{1.5}O₄ has attracted great attention owing to its very high operating voltage of about 4.7 V and low cost [11-14]. However, the practical application of LiNi_{0.5}Mn_{1.5}O₄ has been limited because of its low discharge capacity (theoretical capacity \sim 147 mAh g⁻¹) and fast fading of upon prolonged cycling. These drawbacks capacity of $LiNi_{0.5}Mn_{1.5}O_4$ are mainly caused by the following factors: (1) the inherently slow ion diffusivity and low electronic conductivity [15–17]; (2) the Jahn-Teller distortion caused by Mn³⁺ during the charge-discharge process [18]; (3) the formation of oxygen vacancies at high temperature [19]; and (4) the dissolution of Mn ions via a chemical reaction: $2Mn^{3+} \rightarrow Mn^{2+} + Mn^{4+}$ at high

http://dx.doi.org/10.1016/i.electacta.2017.03.066 0013-4686/© 2017 Elsevier Ltd. All rights reserved. working potential [6]. Many investigations have been carried out to overcome these shortcomings, such as the doping of metal ion (e.g., Cr, Ru, Cu or V, etc) [20–23], surface coating (e.g., Al₂O₃, CuO, SiO₂, ZnO, Li₃PO₄, Li₂CO₃, etc) [24–29] and so on. For examples, R. Verrelli et al. have synthesized Cu-doped spinel cathode material (i.e., Li_{0.85}Ni_{0.46}Cu_{0.1}Mn_{1.49}O₄) by a solid state process and the sample exhibited a discharge capacity of $\sim 100 \text{ mAh g}^{-1}$ at 0.1 C [22]; W. K. Shin et al. reported that the coating of SiO₂ improves the electrochemical performance of spinel LiNi_{0.5}Mn_{1.5}O₄, and the LiNi_{0.5}Mn_{1.5}O₄@3wt%SiO₂ electrode delivered a high discharge capacity of 130.7 mAh g^{-1} at 0.1 C [26]. Recently, the spinel materials coated with fast Li⁺-ion conductors (e.g., Li₂CO₃, LiPO₃, Li₂TiO₃, etc) have been frequently studied, giving enhanced electrochemical performance (discharge capacities of ~135 mAh g^{-1}) [29–33]. It should be noted that although the surface coating of fast Li⁺-ion conductor, to some extent, is effective to heighten the cyclic performance and rate capability of LiNi_{0.5}Mn_{1.5}O₄ electrode, it still cannot meet the requirements of the practical applications. Most of LiNi0.5Mn1.5O4-based materials still exhibit relative low discharge capacities of \sim 100–130 mAh g⁻¹ [11–14,18,19]. Therefore, it is very important to develop a feasible approach to further improve the electrochemical performance of the LiNi_{0.5}Mn_{1.5}O₄based cathodes.

Recently, Li₂SiO₃, a novel and typical Li⁺-ion conductor, has been widely studied as a surface modifier for cathode materials

Corresponding author. E-mail address: ddmd222@sicnu.edu.cn (D. Lin).

[34–36]. For example, Gao et al. prepared a Li₂SiO₃-coated lithiumrich $Li_{1.8}[Mn_{0.7}Co_{0.15}Ni_{0.15}]O_{2.675}$ cathode material, and their investigation show that the coating of 1.5 wt% Li₂SiO₃ effectively improved the rate capability and cycling performance of the material [36]; Zhao et al. have found that Li₂SiO₃-coated layered oxide LiMO₂ cathodes delivered a relatively high discharge capacity compared to the pristine [35]. As a surface coating agent, the main roles of Li₂SiO₃ have been considered as follows: (1) keeping the surface structural stability of cathode materials [34]: (2) suppressing the occurrence of the side reactions as a chemically inert material [34]; (3) improving the Li⁺-ion conductivity [36]; (4) providing more Li⁺ ions during intercalation/deintercalation processes to improve the capacity [35]. For example, the coating of 1.5 wt% Li₂SiO₃ lead to the increase in the discharge capacity of $Li_{1.8}$ [Mn_{0.7}Co_{0.15}Ni_{0.15}]O_{2.675} from ~240 to 250 mAh g⁻¹ (increased by 4.17%) [34], while a 5 mol% Li_2SiO_3 coated $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ electrode exhibited a discharge capacity of 164.2 mAh g^{-1} (increased by 6.27%) [37]. Therefore, it can be seen that the amorphous Li₂SiO₃ coating layer has an important influence on the electrochemical performance. In addition, it may be inferred that the Li₂SiO₃ may be used as a bridging agent to enhance electrochemical performance because of its excellent Li⁺-ion conductivity [35]. Therefore, in this work, we used Li₂SiO₃ as the modifying agent to improve the electrochemical performance of LiNi_{0.5}Mn_{1.5}O₄ spinel cathode materials. As shown in Figs. 1a and b, Li₂SiO₃ possesses a layer structure and exhibits threedimensional (3-D) channels for Li⁺-ion diffusion [36]. In the crystalline structure of Li₂SiO₃, the SiO₄ tetrahedrons are tightly connected together by lithium ions [38]. Li⁺ ions can transfer to each other via the (010) and (001) planes through 3-D channels for Li⁺-ion diffusion [36]. On the other hand, Fig. 1c shows that a spinel LiNi_{0.5}Mn_{1.5}O₄ also possesses the 3-D tunnels for fast Li⁺ ion transportation. It has been frequently reported that layerstructured cathodes can be well composited to spinel cathode materials, such as, Li[Li_{0.2}Mn_{0.54}Ni_{0.13}Co_{0.13}]O₂-LiMn_{1.5}Ti_{0.5}O₄ [39], $Li_2MnO_3 \cdot Li(Mn_{0.5}Ni_{0.5})O_2 - Li[Mn_{1.5}Ni_{0.5}]O_4$ [40] and $Li[Li_{1/3}Mn_{2/3}]$ O_2 -Li[Mn_{1.5}Ni_{0.5}] O_4 [41]. Because spinel (111) and layered (200) planes have similar close-packed planes [40,42,43], it may be inferred that the layer-structured Li₂SiO₃ can be composited with the spinel LiNi_{0.5}Mn_{1.5}O₄. In addition, Li₂SiO₃ possesses a layer structure and exhibits three-dimensional (3-D) channels for Li⁺ion diffusion [36], while the spinel $LiNi_{0.5}Mn_{1.5}O_4$ also possesses the 3-D tunnels for fast Li⁺ ion transportation. It can be reasonably anticipated that this compositing of Li_2SiO_3 with $LiNi_{0.5}Mn_{1.5}O_4$ may lead to the synergy effect of the 3-D lithium ion channels between LiNi_{0.5}Mn_{1.5}O₄ and Li₂SiO₃. The schematic view of the given composite materials is shown in Fig. 1d. It can be seen that the layer-structured Li₂SiO₃ may act as bridging and/or coating agents in the composite materials. As a result, the compositing of layer-structured Li₂SiO₃ with the spinel LiNi_{0.5}Mn_{1.5}O₄ may present a new approach to enhance the electrochemical performance of $LiNi_{0.5}Mn_{1.5}O_4$ -based materials. In this work, novel (1-*x*) LiNi_{0.5}Mn_{1.5}O₄·xLi₂SiO₃ cathode composites have been developed and synthesized via a citric acid-assisted sol-gel method; and the phase structure, micromorphology and electrochemical performance of the pristine and modified samples have been systematically investigated. The obtained cathode composites exhibit the significant enhancement in the capacity and rate capability for high-performance and high-voltage lithium-ion batteries.

2. Experimental

2.1. Synthesis of the (1-x)LiNi_{0.5}Mn_{1.5}O₄·xLi₂SiO₃ composites

(1-x)LiNi_{0.5}Mn_{1.5}O₄·xLi₂SiO₃ (LNM-LS-x, x = 0, 0.05, 0.1, 0.15, 0.2and 0.3) nominal composites were synthesized by a citric acidassisted sol-gel method. Stoichiometric amounts of lithium acetate (LiAc·2H₂O, 99.0%, Sinopharm), manganese acetate (Mn (Ac)₂·4H₂O, 99%, Sinopharm) and nickel acetate (Ni(Ac)₂·4H₂O, 98.0%, Sinopharm) were dissolved in deionized water. After

Fig. 1. The crystalline structure of Li_2SiO_3 : (a) the (010) plane, (b) the (001) plane; (c) the crystalline structure of $LiNi_{0.5}Mn_{1.5}O_4$; and (d) the schematic view of the given composite materials (LNM $- LiNi_{0.5}Mn_{1.5}O_4$; LS $- Li_2SiO_3$).

Download English Version:

https://daneshyari.com/en/article/6471528

Download Persian Version:

https://daneshyari.com/article/6471528

Daneshyari.com