
Electrochimica Acta 235 (2017) 437–441

Contents lists available at ScienceDirect

Electrochimica Acta

journa l homepage: www.e lsev ier .com/ locate /e lec tac ta

Influence of Geometry-Induced Frequency Dispersion on the
Impedance of Ring Electrodes

Yu-Min Chen, Christopher L. Alexander, Christopher Cleveland, Mark E. Orazem ∗

Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, USA

a r t i c l e i n f o

Article history:
Received 18 January 2017
Received in revised form 3 March 2017
Accepted 6 March 2017
Available online 10 March 2017

Keywords:
Sensors
Numerical simulation
Impedance spectroscopy
Frequency dispersion

a b s t r a c t

Finite-element simulations for the impedance response of ring electrodes were used to identify the char-
acteristic frequency associated with the influence of electrode geometry on impedance response. An
approximate expression for the characteristic ring-electrode dimension was found to be adequate for
a wide ring, and have an error of 20 percent for a thin ring. A refined expression for the characteris-
tic dimension is presented. The characteristic frequency associated with the influence of ring-electrode
geometry is always larger than that associated with the geometry of a disk. These results guide the design
of ring-shaped sensors that employ impedance measurements.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The ring-electrode geometry has been widely used in electro-
chemical systems with electrochemical impedance spectroscopy
(EIS) as an analysis technique. Hsieh et al. [1] conducted impedance
measurements on ring-shaped interdigitated electrodes to char-
acterize the concentration change of glycated hemoglobin. Besio
and Prasad [2] used a concentric ring electrode to analyze
the skin–electrode impedance. They performed single-frequency
impedance measurements at 1 kHz and concluded that copper
is the best material among several metals for their biosensor. Li
et al. [3] conducted impedance measurements on a rotating ring
electrode to determine the mechanism of the chlorine evolution
reaction. Their work suggested that, on a Pt surface, the rate of chlo-
ride discharge and simultaneous chlorine adsorption is first order
with respect to chloride concentration; whereas, the rate of the
adsorption and desorption process is second order with respect to
chloride concentration.

The current and potential distribution for the ring electrode
geometry has been widely studied. The primary current distribu-
tion associated with the ring electrode geometry is nonuniform.
Pierini and Newman [4] presented an analytic solution for the pri-
mary and secondary current distribution on ring electrodes. Datta
et al. [5] used the finite-element method to calculate the steady-
state current and potential distribution for concentric ring-ring
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electrodes and double concentric (ring-ring-ring) electrodes used
for transcranial current stimulation. Their work showed that the
electric field on a ring electrode decreases rapidly in the radial
direction. Mansor and Ibrahim [6] also performed simulations indi-
cating that the electric field on a ring interdigitated electrode
reaches a maximum at the ring edges and a minimum at the center
of the rings.

The term frequency or time-constant dispersion is used to
describe the broadening of the impedance response associated with
a distribution of time constants. Frequency dispersion associated
with an electrode geometry originates from the nonuniform cur-
rent and potential distribution, which changes as a function of
frequency. Newman [7] showed, by solution of Laplace’s equa-
tion, that frequency dispersion is observed for disk electrodes for
frequencies larger than a characteristic value. A dimensionless fre-
quency may be expressed as [7–11]

K = ωC0�c,disk

�
. (1)

where ω is the angular frequency, � is the electrolyte conductivity,
C0 is the capacitance of the disk electrode, and �c,disk is the char-
acteristic length for a disk electrode. Huang et al. [8] showed that,
for

�c,disk = r0 (2)

the characteristic frequency for a disk electrode occurs near K = 1;
thus, the associated characteristic dimension for the disk electrode
is the radius of the disk.
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Alexander et al. [11] showed that the characteristic dimension
for a rough disk is given by

�c,rough disk = frr0 (3)

where fr is the rugosity or roughness factor defined to be the ratio
of the actual surface area to the superficial surface area of the disk.
Alexander et al. [11] showed further that the characteristic dimen-
sion for roughness is

�c,roughness = f 2
r P (4)

where P is the period associated with roughness.
Equation (1) facilitates estimation of the characteristic fre-

quency at which dispersion influences the impedance response for
a given electrode. For K > 1, frequency dispersion is associated with
the nonuniform current distribution. Therefore, frequency disper-
sion may be eliminated in a desired frequency range by choosing
the appropriate parameters �c and � to ensure that K < 1. The objec-
tive of this work is to find the characteristic dimension associated
with the impedance response of a ring electrode.

2. Mathematical Development

The ring serves as the working electrode, which is embedded in
an infinite, insulated plane with a hemispherical counterelectrode
located at infinity. For the present work, the geometric parameters
r1 and r2 represent the inner and outer radii of the ring electrode,
respectively. The potential distribution for an electrolyte with uni-
form conductivity is governed by Laplace’s equation, which may be
expressed in cylindrical coordinates as

1
r

∂
∂r

(
r
∂�

∂r

)
+ ∂2

�

∂y2
= 0 (5)

where axial symmetry was assumed.
The potential can be expressed in terms of steady-state �̄ and

oscillating
˜

� components as

� = �̄ + Re{
˜

�ejωt} (6)

Similarly, the potential applied at the electrode surface can be
expressed as

V = V̄ + Re{ ˜
Vejωt} (7)

where V̄ is the steady-state value and
˜

V is the oscillating value.
The steady-state solution for the current distribution at a block-

ing electrode shows that the potential is uniform and the current is
equal to zero. As the problem is linear, solution for the oscillating
variables does not require a solution for the steady-state equation.
[9] The impedance response of the ring requires solution of
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r

∂
∂r
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r
∂

˜
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∂r

)
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�
∂y2

= 0 (8)

subject to boundary conditions that the oscillating potential is
equal to zero for distances far away from the disk, i.e.,

˜
� → 0 as r2 + y2 → ∞ (9)

and that, on the insulating plane surrounding the ring,

∂
˜

�
∂y

|y=0 = 0 for r < r1 and r > r2 (10)

For a blocking electrode, Huang et al. [8] showed that the flux con-
dition at the surface of a disk electrode can be expressed as

C0
∂ (V − �(0))

∂t
= −�

∂�

∂y

∣∣∣∣
y=0

(11)

where �(0) is the potential outside the diffuse part of the double
layer. The corresponding expression in terms of oscillating vari-
ables is given by

jωC0

(
˜
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˜

�(0)

)
= −�

∂
˜
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y=0

(12)

The impedance was calculated as

Z (ω) =
˜

V
˜
I

(13)

for a specified range of frequencies, where
˜
I is the oscillating current

at the working electrode obtained by integrating the local current
density over the surface of the electrode.

3. Numerical Method

The finite-element-analysis solver and simulation software
COMSOL Multiphysics

®
was used to solve Laplace’s equation in

cylindrical coordinates for the ring electrode. Triangular elements
were employed with quadratic interpolation. Due to the singular-
ities that arise near the edge of the ring electrode, a nonuniform
meshing scheme was implemented near the surface of the ring
electrode. A direct linear solver was used. The meshing was refined
manually to ensure that the impedance response of a disk elec-
trode yielded the correct high-frequency primary resistance, i.e.,
Re�r0 = 1/4.[12] Similar mesh sizes were then used for the ring
electrodes. In contrast to the frequency-dependent adaptive mesh
algorithm employed by Michel et al., [13] the same meshing was
then employed for all frequencies. Calculation of 80 frequencies (10
points per decade from 10−2 Hz to 109 Hz) required less than 30 min
on a 64-bit Dell Precision T7400 workstation with dual Xeon E5410
2.33 GHz processors and 32G Byte of RAM.

A schematic representation of the finite element mesh used for
the ring electrode simulations is provided in Fig. 1 detailing: a) the

Fig. 1. Schematic representation of a sample finite element mesh used for ring elec-
trode simulations: a) entire domain and b) an enlarged region showing the two
insulating surfaces and the ring electrode.



Download English Version:

https://daneshyari.com/en/article/6471640

Download Persian Version:

https://daneshyari.com/article/6471640

Daneshyari.com

https://daneshyari.com/en/article/6471640
https://daneshyari.com/article/6471640
https://daneshyari.com

