ELSEVIER

Contents lists available at ScienceDirect

Electrochimica Acta

journal homepage: www.elsevier.com/locate/electacta

Ultralong cycling stability of carbon-nanotube/LiFePO₄ nanocomposites as electrode materials for lithium-ion batteries

Yu Qing Qiao^{a,b}, Wei Liang Feng^a, Jing Li^a, Tong De Shen^{a,*}

- ^a State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, PR China
- ^b College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China

ARTICLE INFO

Article history:
Received 24 November 2016
Received in revised form 23 February 2017
Accepted 27 February 2017
Available online 28 February 2017

Keywords: LiFePO₄ carbon nanotube cycling stability electrode material nanoparticle

ABSTRACT

We developed a method to make CNTs fully coated by polyvinylpyrrolidone (PVP), which acts as an agent to effectively combine CNTs and LiFePO $_4$ to form a nanocomposite. In this nanocomposite, unbreaking and non-entangling CNTs forms a highly conductive 3D CNTs network that can significantly improve both the electrical conductivity of LiFePO $_4$ and the diffusion coefficient of Li ions and electrons. As a result, our CNTs/LiFePO $_4$ nanocomposite exhibited an excellent high-rate capacity and an ultralong cycling stability, i.e., a high discharge capacity of 123 mAh g $^{-1}$ and an extremely low loss in capacity of 1.6% could be achieved after 1000 cycles at 10C. A capacity of \sim 100 mAh g $^{-1}$ (corresponding to a capacity retention of 80%) could still be achieved after 3400 cycles at 10C. The loss in capacity of our LiFePO $_4$ /CNTs is \sim four to eight times smaller than that of previously studied LiFePO $_4$ /CNTs and LiFePO $_4$ /graphene nanocomposites. Our simple but powerful synthetic techniques should be beneficial to the application of lithium-ion batteries based on LiFePO $_4$ electrode materials in such electric vehicles as PHEVs, AEVs, and HEVs.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Lithium-ion batteries are used in most of today's plug-in hybrid electric vehicles (PHEVs) and all electric vehicles (AEVs), as well as some hybrid electric vehicles (HEVs). For electrode materials, improving cycle stability is of immense technological significance [1-3]. Current EV batteries are often guaranteed for 8-10 years whereas the PHEV battery goals of the United States Council for Automotive Research LLC (USCAR) require batteries guaranteed for 15 years, or 5000 cycles, in 2020 [4]. Therefore, capacity loss through cycling at a high current density is a major challenge. The stable structure and the effective conductivity of the electrode materials are two major factors critical to cycle stability. As one of the most competitive candidate electrode materials of Li-ion batteries, the olivine-type LiFePO₄ has attracted extensive research interests [5-8]. As compared with other advantages such as nontoxicity, abundant resources along with a good security, the amazing structural similarity between LiFePO₄ phase and FePO₄ phase is more exciting [9]. It is undoubtedly that the same olivine structure of LiFePO₄ and FePO₄ is beneficial to maintaining the stability of crystal structure, avoiding capacity fading resulting from the volumetric changes during the charge/discharge process, and, hence, developing electrode materials with a superior cycling stability.

Researches have focused on their attention on increasing the effective conductivity of LiFePO₄ electrode materials for improving their superior cycling stability [10-14]. Usually, to maintain a longterm effective conductivity, the conductive agent must have an excellent electrical conductivity, a stable structure, a high strength and toughness, as well as the intimate contact between conductive agent and LiFePO₄. In the past years, many efforts have been made to increase the electrical conductivity by fabricating 3D conductive networks using 1D, 2D and 3D carbon [15-20]. As an 1D conductive material, carbon nanotubes (CNTs) with a large length-to-diameter ratio can significantly improve the cycle stability and rate capability of LiFePO₄ [21-28]. However, the aggregation resulting from the strong Van-der-Waals interactions between carbon nanotubes, the insolubility or poor dispersibility in organic solvents, and the intimate contact between LiFePO₄ and CNTs are of major obstacles to prepare uniformly distributed CNTs in LiFePO₄ electrode materials. Many synthetic techniques, such as surface functionalization, fabricating interface bonding, and designing LiFePO₄/CNTs with core-shell structures, have been developed to address these major obstacles, and most of the

^{*} Corresponding author.

E-mail addresses: tongde666@gmail.com, tdshen@ysu.edu.cn (T.D. Shen).

Table 1Details of the freezing-thawing-drying method for making polyvinylpyrrolidone (PVP)-coated CNTs.

Steps	Procedure	Quantity	T/K	t/min	Other conditions
1	Using H ₂ O	20 mL	298	1	Beaker (50 mL)
2	Adding PVP	2 g	298	1	Beaker (50 mL)
3	Adding CNTs	0.5 g	298	1	1
4	Sonicating	1	298	30	200 watts, 20 kHz
5	Agitating	1	323	240	Magnetic stirrer
6	Centrifugating	1	298	5	At 3000 rpm
7	Freezing	20 g	77	10	Drying flask (50 mL)
					In liquid nitrogen
8	Thawing	1	298	/	1
9	Heating	20 g	323	40	In water bath
10	Repeating steps 7-9	1	1	/	Four times
11	Freezing	20 g	77	10	In liquid nitrogen
12	Drying	20 g	233	960	At a pressure <10 Pa

techniques provide LiFePO₄ electrodes with a good cycle stability [24,29–31]. For example, Chen et al. have demonstrated that their LiFePO₄/CNTs electrode materials exhibit a capacity retention of above 90% after 1000 charge/discharge cycles at 10C [24].

Based on our patented technique [32], we developed a method to make CNTs fully coated by PVP, which acts as an agent to effectively combine CNTs and LiFePO₄ to form a nanocomposite. We first modified CNTs by making PVP/CNTs/water dispersions and repeatedly freezing and heating the dispersions. The modified CNTs are dry, amphiphilic, and PVP-coated powders that can be redispersed in both aqueous and organic solvents to form stable and uniform dispersions with a high concentration of CNTs. We then prepared LiFePO₄ particles with an average particle size of \sim 35 nm. We finally combined our PVP-coated CNTs and LiFePO₄ particles to make LiFePO₄/CNTs nanocomposite electrode materials, where the PVP acts as the dispersant, the surfactant and the binder. The obtained LiFePO₄/CNTs cathode materials exhibit an excellent high-rate capacity and an ultralong cycling stability, i.e., after 1,000 charge (1C)/discharge (10C) cycles, a high discharge capacity of $123.0 \,\mathrm{mAh}\,\mathrm{g}^{-1}$ and an extremely low loss in capacity of 1.6% can be achieved. Moreover, the cathode materials can maintain a discharge capacity of about 100 mAh g⁻¹ (corresponding to a capacity retention of 80%) after 3400 cycles at 10C. To our best knowledge, these are the best rate and cycling performances achieved with the LiFePO₄-based electrode materials [33–39]. The breakthrough can be ascribed to the combined effect of the large Li-ion diffusion coefficient achieved in LiFePO₄ particles and the highly conductive 3D networks composed of monodispersed CNTs free from breaking and entangling effects.

2. Experimental

2.1. Synthesis of PVP-coated CNTs

CNTs synthesized by a CVD method were commercially available from Nanostructured & Amorphous Materials, Inc. (Houston, USA). These CNTs are with a purity of >95 wt.%, an outer diameter of \sim 40 nm, an inner diameter between 5 and 15 nm, and a length between 10 and 20 µm. The CNTs contain such impurities as Cl (0.20 wt%), Fe (0.55 wt%), Ni (1.86 wt%), and S (0.02 wt%) which were measured by an Energy Dispersive X-ray Spectroscopy, as suggested by the supplier's Certificate of Analysis. PVP-coated CNTs powders were prepared with the following procedures: (1) Adding 20 mL deionized water in a beaker (50 mL) at room temperature (25°C); (2) Dissolving 2g PVP (M. W.=40,000) in deionized water to form a solution; (3) Adding 0.5 g CNTs to the above solution to form a mixture; (4) Sonicating the mixture with a sonicator supplied by Ningbo Scientz Bio-Tech Co., Ltd. and equipped with an ultrasonic probe operated at a power of 200 watts and a frequency of 20–25 kHz for 30 min: (5) Agitating the mixture with a conventional magnetic stirrer at 50 °C for 4 hours; (6) Centrifugating the mixture with a conventional centrifuge at 3000 rpm for 5 minutes to separate the nondispersed CNTs and such impurities as metallic catalysts and amorphous carbon from the CNTs/water mixture to form a stable and uniform PVP/CNTs dispersion; (7) Freezing the PVP/CNTs dispersions transferred to a vacuum drying flask (50 mL) in liquid nitrogen (−196 °C) for 10 min; (8) Thawing the frozen dispersion at room temperature; (9) Heating the thawed dispersion in a warming water bath (50 °C) for 40 min; (10) Repeating the above

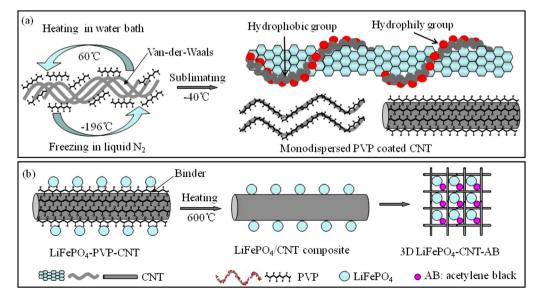


Fig. 1. Schematic description of three-dimensional conductive network of monodispersed CNTs. (a) PVP-coated CNTs; (b) Three-dimensional conductive network with CNTs and acetylene black.

Download English Version:

https://daneshyari.com/en/article/6471851

Download Persian Version:

https://daneshyari.com/article/6471851

<u>Daneshyari.com</u>