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a b s t r a c t

Despite the large potential of unconventional resources, many unknowns still exist regarding the physics
controlling the extraction processes in these settings. These include accurate representation of phase
equilibrium in tight formations and effective implementation of relevant models in simulation tools.

When a fluid is confined in pore spaces of nanometer size, significant interfacial curvatures may occur
that can result in large capillary pressures between the liquid and vapor phases: The pressure difference
between the two phases will likely affect the vapor-liquid equilibrium state. Previous efforts have shown
that this effect is negligible for conventional reservoirs (with pores in the micron range) and current
commercial reservoir simulators commonly ignore the effect of capillary pressure in the VLE calculations.
However, experimental and modeling efforts have shown that ignoring capillary pressure in the VLE
calculations will not be a valid approximation for unconventional (tight) reservoirs.

In this work, we analyze the numerical aspects of including capillarity phenomena in VLE calculations
in an effort to arrive at robust and efficient algorithms for stability analysis that can be used in
compositional modeling/simulation of unconventional reservoirs. While the equality of chemical po-
tentials is a necessary condition for equilibrium, it is not a sufficient one. A sufficient condition for
equilibrium is the minimization of Gibbs energy, and the latter can be tested using the tangent plane
distance (TPD) criteria. We show that stability analysis based on the TPD criteria remains valid for sys-
tems with large capillary pressures and propose effective/robust algorithms for stability testing. The
proposed algorithms are tested for multicomponent reservoir fluid systems over a range of relevant
temperatures, pressures and pore radii.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recent advances in drilling/completion technology have
enabled hydrocarbon extraction from tight unconventional re-
sources such as shale gas, liquid-rich shales and tight oil systems.
These resources currently contribute significantly to the total oil
and gas production in the US. Hydrocarbon in organic-rich shales is
one of the most significant unconventional resources [1]. Despite
the large potential and the advancement in production technology
for these resources, gaps still exist between the physical models
used in currently available simulation tools and the well-
documented additional complexity of fluid flow and mass trans-
fer in micro- and meso-porous materials. A central challenge is
related to the understanding and modeling of phase equilibrium in

confined spaces, e.g. in pores at the nanometer scale, and to
develop appropriate and accurate tools/algorithms to be used for
estimation of reserves and for forecasting of production [2]. Con-
ventional experimental PVT analysis is usually performed based on
the assumption that the porous medium does not influence the
phase behavior [3]. However, fluid properties and VLE behavior in
confined spaces depart substantially from the corresponding bulk
measurements (PVT cell) where vapor-liquid interface curvature
can be neglected [4].

When the fluid is confined in small pores, significant interfacial
curvatures can arise that results in large a capillary pressure be-
tween the equilibrium liquid and vapor phases: A pressure differ-
ence that is known to impact the VLE. It has, however, been
demonstrated previously that this effect is negligible for conven-
tional reservoirs with pore spaces in the micron range [5,6].

Current commercial reservoir simulators commonly ignore the
effect of capillary pressure in VLE calculations. However, experi-
mental and modeling work presented over the past few years
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[3,4,7e10] have shown that neglecting capillary pressure in VLE cal-
culations is not a good assumption for unconventional reservoirs.
Furthermore, a standardand reliablemeasurementoffluidproperties
andVLE for confinedfluids in ultra-tight rocks is still not available [3].

Numerous researchers have worked on analyzing phase enve-
lopes of confined fluids. Nojabaei et al. [8] coupled capillary pres-
sure and phase equilibrium calculations for binary and
multicomponent mixtures in confined pores and integrated their
model into a compositional reservoir simulator. Based on example
calculations, they conclude that better estimates of the producing
gas-oil ratio (GOR) are achieved when the capillary pressure is
included in the equilibrium calculations. Du and Chu [3] proposed a
thermodynamic model to calculate the confined PVT properties for
Bakken crude oil systems considering the effects of capillarity in the
porousmedium.Wang et al. [4] evaluated the effect of capillarity on
VLE calculations using a Leverett J-function approach to approxi-
mate a saturation dependent capillary pressure. Alharthy et al. [11]
proposed a correlation to shift of the phase envelope depending on
pore sizes, dividing the pore space into macro-, meso- and micro-
porosity, while Sandoval et al. [2] proposed a new algorithm to
calculate phase envelopes including the effect of capillary pressure.

Despite a substantial amount of research on the topic of phase
behavior of confined fluids, the effect of capillarity in stability
analysis has not been extensively studied/documented to the best
of our knowledge. In this work, wewill start from Gibbs energy and
the requirement for phase stability and introduce modifications
needed to account for capillarity in stability analysis. We propose
four algorithms for stability testing: Two based on direct/acceler-
ated substitution and two based onminimization. The convergence
behavior of the proposed algorithms is illustrated for a range of
relevant fluid systems and proximity to critical points. The stability
testing is demonstrated to be consistent with the phase boundaries
predicted by phase envelope calculations including capillarity.
Accordingly, the proposed algorithms provide for reliable tools to
study the effect of capillary pressure on phase stability over a wide
range of compositions and capillary radii as needed in composi-
tional simulation of unconventional reservoirs/formations.

2. Methodology

In this section, we discuss the stability analysis of a confined
fluid and the related impact of capillary pressure. Starting from
Helmholtz energy, one can derive the equilibrium condition, in
terms of the chemical potential, m, for a system that includes the
contribution from surface energy [12].

mliðT ; px; xÞ ¼ mvi ðT ; py; yÞ; i ¼ 1; ::;nc; (1)

In Eq. (1), the phase pressures (pl and pv) are related through the
Young-Laplace equation (written for a spherical interface)

pv � pl ¼ 2s
R

: (2)

The interfacial tension, s, is a given function of phase compo-
sitions (x and y), temperature, T, phase pressures and the radius of
curvature of the interface, R. In a capillary tube (pore) the capillary
pressure, Pc, is evaluated from

Pc ¼ pv � pl ¼ 2s cos q
rc

; (3)

where rc is pore radius and q is the contact angle as measured
through the denser phase. Although porous rocks are made up by
complex networks of non-cylindrical pores of variable radii, we use
here a single value (average) representation of the pore radius for

simplicity. We also assume, by default, that the rock is strongly
liquid wet ðq ¼ 0Þ. We use the correlation of Macleod [13] and
Sugden [14] to calculate interfacial tension (IFT),

s ¼
"Xnc

i¼1

ci

�
xir

L � yir
V
�#E

; (4)

where rL and rV are phase molar densities, xi and yi are phase
compositions, ci is the component parachor and E is an (adjustable)
exponent. Researchers have suggested a variety of values for the
exponent E. Weignaug and Katz [15] suggested that E ¼ 4, while
Hough-Stegemeier [16] modified the exponent to E ¼ 3.66 for low
IFT systems. In 1984, Lee and Chien [17] suggested a value of
E ¼ 3.91 using critical scaling theory of IFT to evaluate the de-
pendency on temperature. Danesh et al. [18] presented a density-
dependent model for exponent E. Schechter and Guo [19] recom-
mended E ¼ 3.88 based on experimental data for hydrocarbon
systems. In this work, we use E ¼ 4 (following Weignaug and Katz).
From Eq. (4), one can calculate the interfacial tension, and hence the
capillary pressure, for a given set of phase compositions and den-
sities (pressures) of liquid and vapor phases given a pore radius and
a contact angle. This allows for a simple algorithm to update the
phase pressures by direct substitution as discussed in more detail
later.

2.1. Formulation of the stability analysis problem

The tangent plane distance (TPD) of Gibbs has been used
repeatedly in developing algorithms for stability analysis of un-
confined fluids [20]. To apply this idea for confined fluids, we make
the assumption that the volume (or mass) contribution to changes
in Gibbs free energy is larger than the interface contribution. In
terms of nucleation theory, this is equivalent to assuming that the
volume (radius) of any trial phase exceeds the radius of a critical
nucleus. Based on this assumption, we can write the TPD at
isothermal conditions in the following form

TPDðwÞ ¼
Xnc

i¼1

wi
�
mwi ðw; pwÞ � mzi ðz; pzÞ

�
; (5)

where z is the feed composition existing at pressure pz and w is a
trial phase composition existing at pw. The assumption of neglect-
ing the interfacial contribution to changes in Gibbs energy, as
outlined above, is consistent with the formulation of Sandoval et al.
[2] for tracing phase boundaries. This is seen from Eq. (5) where the
TPD will equal zero on the phase boundary where the incipient
phase (w) exists is in equilibrium with the bulk phase (z).

At this stage, we can follow the approach of Michelsen [20], and
introduce a modified TPD via the variable transformation

lnWi ¼ lnwi � k; (6)

where k is the reduced TPD at the stationary points of Eq. (5). The
modified reduced TPD, tm, for a system including capillary pressure
can then be written in terms of fugacity coefficients

tmðWÞ ¼ 1þ
XNc
i¼1

Wi
�
lnWi þ ln b4w

i þ ln pw � di � 1
�
; (7)

with

di ¼ ln zi þ ln b4z
i þ ln pz; i ¼ 1; ::;Nc (8)

and
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