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a b s t r a c t

Critical points of natural gas mixtures containing linear alkane molecules (C1-n-C8), branch alkanes (i-C4-
i-C5), nitrogen (N2), and carbon dioxide (CO2) are calculated using a criterion based upon the Helmholtz
free energy. We use the GERG equation of state with its mixing rules together with needed derivatives
evaluated numerically. A multivariable iterative method is used to solve the system of non-linear
equations that appear in this procedure. Results are checked for stability using mechanical, diffusional
and global stability tests. Our results are compared with the literature values. Maximum error for the
temperature and pressure are 1.301 and 11.087% respectively. The predictive capability of the GERG-2008
equation of state is compared with PR, SRK, PSRK, SPHCT, and PC-SAFT equations of state. For binary
mixtures, all equations of state are capable of representing global phase behavior types I to IV. Results
show that the GERG-2008 equation of state with binary interaction parameters is adequate for the
prediction of critical points.

© 2017 Elsevier B.V. All rights reserved.

2. Introduction

In the natural gas industry, accurate prediction of thermody-
namic properties is important from an economical point of view.
Recently, the Groupe Europ�een de Recherchers Gazi�eres (GERG)
[1,2] has developed an accurate equation of state for natural gas.
This equation is based upon reference equations of state of the
constituents. The success of the GERG equation of state has been
shown in different applications: optimization of the Rankine cycle
[3], calculation of Joule-Thompson inversion curve [4], prediction of
thermodynamic properties at supercritical conditions [5,6],
modeling liquefaction of natural gas [7], validation of models for
fluid transport in pipelines [8], prediction of phase equilibria
including formation of carbon hydrates in pipelines [9e11] and the
used of its mixing rules for the prediction of transport and ther-
mophysical properties of different fuels [12e17]. The GERG equa-
tion of state has even been used together with a geochemical model
to calculate the solubility of gases in liquid hydrocarbons at

cryogenic conditions of Titan, Saturn's moon [18].
The critical point of a natural gas mixture is of special interest

because it allows us to know the global phase behavior indirectly if
the mixture is in the retrograde region [1]. Calculation of critical
points using reference equations of state is reported by Akasaka
[19e21]. Heidemann and Khalil (HK) [22] have developed an al-
gorithm for the calculation of critical conditions of mixtures based
upon a Taylor series expansion of the Helmholtz energy. Their
method has been successfully used in the calculation of critical
points [23e32] using different equations of state and different
mixing rules. Also, their method has been solved with many nu-
merical techniques [33e39].

In this work, we estimate critical points of natural gas mixtures
containing linear alkanes (C1-n-C8), branch alkanes (i-C4-i-C5), ni-
trogen (N2), and carbon dioxide (CO2), using an existing algorithm
with our own modification to improve its convergence. We use the
method proposed by Heideman and Khalil [22] where they per-
formed a Taylor series expansion of Helmholtz free energy around
the critical point. The unknowns with this procedure are the critical
temperature and the critical volume. Derivatives of the Helmholtz
energy are evaluated numerically using the GERG equation of state
[2] and a nonlinear system of two equations is solved with a
multivariable Newton-Raphson method [19]. Mechanical, diffu-
sional and global stability [30] tests are performed to the solution to
check stability of the critical point. Results are compared with
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experimental critical temperatures and pressures reported in the
literature. Furthermore, a comparison of the prediction of critical
loci is performed using GERG-2008, Peng-Robinson (PR) and
Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT)
equations of state for 42 binary systems. Alfredique and Castier [25]
have shown that the PR and PC-SAFT equations of state can predict
the global phase behavior types I to V and I to IV (van Konynenburg
and Scott classification [40]), respectively. Results for critical points
of five natural gas mixtures for GERG-2008 is compared with re-
sults reported in literature for PR, PC-SAFT, Soave-Redlich-Kwon
(SRK), Predictive Soave-Redlich-Kowng (PSRK), and Simplified
Perturbed Hard-Chain Theory (SPHCT) equations of state.

2. Methodology

The criterion to find the critical conditions consists of solving
simultaneously a system of two non-linear equations that involves
the second and third derivatives of the Helmholtz energy with
respect to the number of moles. The unknowns are the critical
volume and the critical temperature. For a multicomponent
mixture,
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where A is the total Helmholtz energy, ni, nj, and nk are the number
of moles of component i, j, and k present in the mixture and the
vector Dn is a perturbation in the moles number. A problem exists
in solving Eqs. (2) and (3) for multicomponent systems at small
molar fractions since we encounter a stiff problem due to the dif-
ference in the magnitude of the derivatives of the Helmholtz en-
ergy in Eq. (3). We have modified Eq. (3) by multiplying the second
derivative by the yi mole fraction,
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which is allowed because multiplying a row by a constant does not
change equality of the determinant with zero.

In this work, we use the GERG-2008 EOS [2] to evaluate the
Helmholtz energy and their derivatives,

aðt; d; xÞ
RT

¼ aðt; d; xÞ ¼ a0ðT; r; xÞ þ arðt; d; xÞ (5)

where a� is the non-dimensionalized Helmholtz energy for the
ideal gas mixture, ar is the non-dimensionalized residual

Helmholtz energy. Kunz et al. [1] and Kunz andWagner [2] propose
the following mixing rules for the Hemholtz energies,
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where a0i is the non-dimensionalized ideal gas Helmholtz energy
for pure substance i, ari is the non-dimensionalized residual
Helmholtz energy and arij is the non-dimensionalized interaction
residual Helmholz energy between species i and j. Expressions of
the non-dimensionalized Helmholtz energy for the pure compo-
nents are
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In Eq. (8), n0i;k and w0
i;k are parameters for calculation of the ideal

heat capacity at the reference state, according to Jaeschke and
Schley [41]. It is common to consider the ideal gas enthalpy and
entropy of the reference state equal to zero [2] at T0 ¼ 298:15 K
and P0 ¼ 0:101325 MPa with a density equal to r0 ¼ P0=R,T0

. The
ratio R=R* is used to relate the actual molar gas constant
R ¼ 8:314598 J,mol�1,K�1 [42] and molar gas constant
R* ¼ 8:314510 J,mol�1,K�1 used by Jaeschke and Schley [41].
Residual Helmholtz energy equations for pure components, ari ,
have been developed previosuly by Span and Wagner [43], Kunz
et al. [1] and Kunz and Wagner [2]. The characteristic parameters,
Nk, dk, tk, and ck, are reported by Kunz et al. [1] and Kunz and
Wagner [2]. They reported the parameters for 21 pure components
including hydrocarbons, water, nitrogen, hydrogen, etc. They define
the reduced density and temperature of the mixture as

d ¼ r

rred
(12)

t ¼ Tred
T

(13)
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