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h i g h l i g h t s

� Predictions of distinct gasoline effects on the behavior of an engine performance.
� Metamodels were generated using radial basis functions and kriging techniques.
� The ‘‘leave-one-out” cross-validation procedure was applied to select metamodels.
� Most of the prediction residuals were lower than 3%.
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a b s t r a c t

The accurate simulation of fuel properties’ influence in the performance of internal combustion engines is
a very complex subject and combines many physical and chemical concepts such as combustion phenom-
ena, chemical kinetics, fluid dynamics, turbulence and thermodynamics. In order to circumvent the com-
plexity of these concepts, many of simulations packages for engine performance usually consider
standard or surrogate fuels, which might not be enough for new fuel developments in some cases. This
study aims to evaluate the influence of different formulations of gasoline on the behavior of a flexible fuel
engine, relating the physicochemical properties of fuels with performance, efficiency and gaseous emis-
sions. Based on an experimental dataset, metamodels were generated using different radial basis func-
tions and kriging techniques in order to accurately predict torque, fuel consumption, specific fuel
consumption, global efficiency and CO2 emission with twelve blends of iso-octane, n-heptane, toluene
and ethanol at different engine speeds and load conditions. The ‘‘leave-one-out” cross-validation proce-
dure was applied to automatically select the best metamodel for each case. Metamodels were able to esti-
mate the experimental results of five fuels within the 95% confidence intervals and most of the prediction
residuals were lower than 3%.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Early in the history of fuel production, only a few requirements
were specified to ensure that fuels were capable of running engines
and vehicles with reasonable performance. The octane number was

probably the most important property at that time [1]. From the
1970’s onwards, with the growth of environmental concerns and
implementation of emission regulations, other properties were
added to the fuel specifications [2,3].

To meet regulatory metrics and achieve better performances,
each new engine technology requires a corresponding improve-
ment in fuel quality. Thus, the development of high-quality fuels
for internal combustion engines has been widely expanded and
has become a major research topic in the last decades for the
world’s leading oil and fuel companies.

In order to cover the key quality attributes of a new fuel, such as
engine performance, fuel consumption, pollutant emissions,
engine cleanliness and durability, developments usually require a
large number of distinct experimental tests. This leads to
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expensive laboratory arrangements, large amounts of different fuel
formulations, vehicles, engines and specialized personnel that can
result in huge budgets and schedules. A very attractive alternative
to reduce costs and development time is the use of computational
simulation during a first screening of fuels and/or additives formu-
lations, optimizing the experimental effort [4–9].

Currently, several very powerful engine simulators [10–14] are
commercially available and are widely used by the automotive
industry to design and optimize new engines and vehicles. These
packages are primarily dedicated to engines development and usu-
ally consider standard or surrogate fuels to evaluate performance
for different engine setups. However, fuel development needs
exactly the opposite configuration, setting the engine parameters
and changing the compositions and properties of fuels.

Phenomenological approaches to simulate fuel performances
related to their physico-chemical properties dealwith very complex
disciplines such as chemical kinetics, fluid dynamics, combustion,
and thermodynamics [9,15]. The chemical kinetics of gasoline is
under challenging research and it is not yet possible to completely
model the combustion of gasoline. Calculations in this area require
a large number of coupled equations with very high computational
effort, which in fact are still not completely dominated [16–18].

Notwithstanding, the use of statistical techniques based on
experimental data to evaluate the behavior of engines and fuels
has been increasing in recent years. For example, Traver et al.
[19] developed neural network metamodels to predict gaseous
emissions of a Navistar T444 engine, related to combustion cham-
ber pressure information. Sayin et al. [20] presented a neural net-
work metamodel to predict specific fuel consumption, thermal
efficiency, exhaust gas temperature and gaseous emissions from
an engine running with four gasolines of different octane numbers.

In other studies,Najafi et al. [21] estimated theperformanceof an
engine powered by different blends of ethanol and gasoline using a
neural network metamodel; Colaço et al. [22] presented a hybrid
optimization metamodel to evaluate the pressure inside the com-
bustion chamber of an engine related to different blends of diesel
and biodiesel; Abuhabaya et al. [23] used polynomial response sur-
faces to estimate performance and emissions of a diesel engine run-
ningwithdifferentbiodiesel blends. In addition, otherworkspresent
the use of metamodels as feasible computational alternatives to
accurately predict the performance of engines and fuels [24–28].

This work proposes the use of response surface approaches,
based on radial basis functions (RBF) and kriging [29–32] to predict
the influence of different fuels on the performance of an engine.
Prediction metamodels for performance, efficiency and gaseous
emissions were generated from an experimental data set of a flex-
ible fuel engine running in different operating conditions and using
distinct surrogate fuel blends of isooctane, n-heptane, toluene and
ethanol [4,5]. The validation results show that the proposed
approach was able to accurately predict the performance of Brazil-
ian gasolines under different engine operating conditions. This
simulation algorithm has been successfully implemented in the
Matlab� language and might become a helpful auxiliary tool in
the development of new fuels.

This paper is organized as follows. Brief details on RBF and krig-
ing techniques are presented in Section 2. Section 3 describes the
experimental setup and also the configuration of implemented
metamodels. Results of validation, prediction and metamodels
accuracy are presented in Section 4. Finally, some conclusions are
listed in Section 5, including proposals for future works.

2. Metamodels techniques

Metamodels or response surfaces are analytical models based
on different mathematical and statistical techniques and used to

approximate the behavior of complex phenomena or expensive
simulation models in function of observed multidimensional data
[33–36].

The general form of a metamodel can be represented by

yðxÞ � YðxÞ ¼ gðxÞ þ eðxÞ ð1Þ
where the estimative Y(x) of the actual value of a quantity y(x), at
an observation point x 2 Rd, d > 0, is described by a simplified model
g(x), plus an error e(x). The metamodel definition includes the iden-
tification of g(x) and e(x).

Many techniques are available for generating metamodels [34],
such as polynomial regression, splines, radial basis functions, neu-
ral networks, spatial correlations (kriging) and frequency-domain
models.

In this paper, radial basis functions and kriging methodologies
are investigated. Regarding kriging metamodels, two distinct
approaches are applied. One is ordinary kriging that uses the
adjustment of an experimental semivariogram to estimate covari-
ances. Another is the so-called DACE method that describes a
stochastic process. At last, a hybrid approach between RBF and
kriging is also applied to estimate the variances of RBF predictions.

2.1. Radial basis functions

The generation of response surface based on Radial Basis Func-
tions (RBF) was first proposed by Kansa [29], after the work of
Hardy [37] on multivariate approximation for topography and
other irregular surfaces. This technique is becoming an established
powerful approach in recent years to interpolate multidimensional
data and simulate different problems in many areas of engineering
[25–28,38–40].

For a set of given observed values y(x) associated to their
respective spatial locations {xj: j = 1, . . . , n}, the general form of a
metamodel based on radial basis functions can be written as
[29,41].

yðxÞ � YðxÞ ¼
Xn
j¼1

aj/ðkx� xjkÞ; x 2 Rd; yðxÞ 2 R ð2Þ

where Y(x) is the estimated value obtained by interpolation [42].
The kernel function / : Rd ! R that builds the interpolator Y(x)
and uses the Euclidian norm kx� xjk is called a radial basis function
centered at xj [43,44]. This approximation is solved for the aj coef-
ficients from the following system of n linear equations:

Ua ¼ y; U 2 Rn�n; a; y 2 Rn ð3Þ
Radial basis functions can assume different forms such as linear,

cubical, thin plate, spline, multiquadric, Gaussian, squared multi-
quadric, and cubical multiquadric [45,46]. In this work, the follow-
ing forms of kernel functions are investigated:

1. Multiquadric:

/ðkx� xjkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx� xjk2 þ c2j

q
; i; j ¼ 1; . . . ;n ð4Þ

2. Gaussian:

/ðkx� xjkÞ ¼ exp �c2j kx� xjk2
h i

; i; j ¼ 1; . . . ;n ð5Þ

3. Squared Multiquadric:

/ðkx� xjkÞ ¼ kx� xjk2 þ c2j ; i; j ¼ 1; . . . ;n ð6Þ
4. Cubical Multiquadric:

/ðkx� xjkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx� xjk2 þ c2j

q� �3
; i; j ¼ 1; . . . ;n ð7Þ
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