FISEVIER

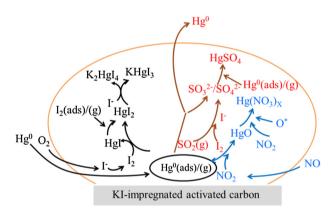
Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Full Length Article

Effect of characteristics of KI-impregnated activated carbon and flue gas components on Hg^0 removal


Li Tong^a, Tao Yue^{a,b,*}, Penglai Zuo^{a,*}, Xiaoxi Zhang^a, Chenlong Wang^a, Jiajia Gao^a, Kun Wang^a

HIGHLIGHTS

- The relationship between the KI-AC characteristics and Hg⁰ removal was established.
- The mechanism of Hg⁰ adsorption under various flue gas components was discussed.
- The binding abilities of mercury and different groups generated over the KI-AC were compared.

G R A P H I C A L A B S T R A C T

Proposed adsorption mechanism for Hg⁰ under the simulated flue gas over the 1% KI-AC.

ARTICLE INFO

Article history:
Received 27 September 2016
Received in revised form 5 December 2016
Accepted 24 December 2016
Available online 14 February 2017

Keywords: Activated carbon KI Hg⁰ Flue gas compositions Mechanism

ABSTRACT

The KI-impregnated activated carbon (KI-AC) was synthesized to investigate its capacity for elemental mercury (Hg⁰) removal under the simulated flue gas. The Hg⁰ removal performance is significantly promoted by KI loading. The effect of reaction temperature and activated carbon porosity on Hg⁰ removal, and calculation on desorption activation energy of adsorbed mercury species were employed to identify the relationships between the physicochemical characteristics of the KI-AC and Hg⁰ removal capacity. Raising the reaction temperature weakens the function of physisorption in the process of Hg⁰ removal. The Brunauer-Emmett-Teller (BET) surface area and desorption activation energy of the adsorbed mercury species analyses indicate that the Hg⁰ removal occurs through a combination of physisorption and chemisorption, and the chemisorption dominates the reaction. In addition, the influences of flue gas components on Hg^0 removal over KI-AC were evaluated, and the adsorption mechanisms were proposed. Oxidation of I^- ion by the presence of O_2 is the substantial reason that facilitates the Hg^0 removal. The Hg^0 removal performance is promoted by the generation of SO_3^{2-}/SO_4^{2-} and slightly frustrated by the competitive adsorption as well as consumption of I2 molecules. Higher concentration of NO inhibits the generation of HgO products. However, the KI-AC sample remains highly active toward Hg⁰ removal in the presence of NO because of the reaction with active N-containing groups. Additionally, the affinity capacities between Hg^0 and the various groups generated on the KI-AC follow the sequence: $N \rightarrow S$ -containing groups.

© 2016 Published by Elsevier Ltd.

E-mail addresses: yuetao420@sina.com (T. Yue), zuopenglai@126.com (P. Zuo).

^a Beijing Municipal Institute of Labor Protection, Beijing 100054, China

b State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Zhejiang 310058, China

^{*} Corresponding authors.

1. Introduction

Over the decades, the great deal of the coal demand in China has caused a variety of environmentally adverse effects [1,2]. Control of mercury emissions is extremely pressing with increasingly stringent standard of power plants. Therefore, as the largest consumer of coal, China has an obligation to cut down the mercury emissions originated from coal combustion of power plants.

The mercury removal capacity substantially lies on its existing forms in the flue gas. Typically, the mercury derived from coalfired flue gas occurs cardinally as gaseous oxidized mercury (Hg²⁺), particulate-bound mercury (Hg^P) and elemental mercury (Hg⁰) [3,4]. Among these mercury speciations, most Hg²⁺ and Hg^p could be readily separated from the flue gas by current pollution control utilities [5,6]. By contrast, Hg⁰ is difficult to remove due to its lower water solubility and higher vapour pressure [7]. Hence, it is of great importance to develop effective Hg⁰ removal technologies.

Adsorption and oxidation methods have been extensively investigated and reported to facilitate the control of Hg⁰. The catalysts employed in the selective catalytic reduction (SCR) reaction have been proved helpful for the catalytic oxidation of Hg⁰ to Hg²⁺ [8–11], but the oxidation efficiency is strongly restricted by the presence of HCl concentration in the flue gas [12]. Among the various adsorbents, activated carbon (AC) injection upstream of the dedust facilities, where the flue gas temperature is usually below 160 °C, have commercially applied in the industry of the United States of America, and exhibits the highest performance for mercury adsorption [13,14]. Nevertheless, the short contact time between the injected AC and the flue gas requires a high carbon to mercury (C/Hg) ratio and thus results in a large operating expense [15]. Since the high cost limits the development of AC injection techniques, the modified activated carbon has been most widely studied in the area of mercury adsorption [16–18]. Previous studies have investigated numerous modified activated carbons for Hg⁰ removal performances, and found that the I-impregnated ACs possessed the highest mercury adsorption capacity [19,20]. Therefore, in this study, KI-AC acts as the adsorption material to evaluate its removal performance for Hg⁰ at low temperature.

Many researchers have approved that the $\mathrm{Hg^0}$ removal performance is closely associated with the physicochemical characteristics of the activated carbon [21–25]. It is reported that the AC with larger BET surface area tended to have bigger surface energy, further to generate larger adsorptive driving force between the adsorbate and adsorbent, which was proven to enhance the $\mathrm{Hg^0}$ physisorption capacity. In addition, the surface oxygen complexes, possibly carbonyl and lactone groups, are the active sites for chemisorption of $\mathrm{Hg^0}$, while the phenol groups might inhibit $\mathrm{Hg^0}$ adsorption. However, the effect of physicochemical characteristics on the $\mathrm{Hg^0}$ removal performance greatly varies in material.

The flue gas components depend strongly on the properties of the coals burned, and the Hg⁰ removal performance is largely affected by the flue gas compositions, including O₂, SO₂ and NO atmosphere. Laboratory experiments indicated that O₂ exhibited a notable promotion in the Hg⁰ capture capacity over the surface of carbonaceous materials by the formation of carbonyls groups [26]. The effect of SO₂ on Hg⁰ removal over the AC hasn't reached an agreement. It was reported that Hg⁰ removal capacity over the AC was irrelevant of the concentration of SO₂ [27]. Others also found that SO₂ alone had a little promotional impact on Hg⁰ adsorption [28]. In addition, the impact of NO on Hg⁰ adsorption varies from ACs. Miller et al. found that 300 ppm NO led to observably positive effect on Hg⁰ capture [28]. Liu et al. indicated that 500 ppm NO had no detectable effect on Hg⁰ capture [29]. In addition, previous literatures predominately concentrated on the

impacts of flue gases on Hg^0 capture, and little attention had been paid to the affinity capacities between Hg^0 and various groups that formed due to the presence of flue gas components.

On the basis of the above analysis, this study focused on identifying the relationships between the physicochemical characteristics of the KI-AC and Hg⁰ removal performance, and evaluated the impact of the co-existence gaseous components on Hg⁰ removal. Furthermore, the probable reaction pathways were proposed according to the experimental data. The affinity capacities between Hg⁰ and the various groups over the KI-AC sample were also contrasted. The improved understanding of the research will help to provide insight into the potential industrial applications of KI-AC adsorbents in chlorine-free flue gas systems.

2. Materials and methods

2.1. Sample preparation

The activated carbon support is purchased from the Chengde Jibei Yanshan Activated Carbon Plant of Hebei Province. Prior to use, virgin AC were grinded and sieved to 20–60 Chinese mesh. Subsequently, it was washed and agitated with distilled water for several times and soon dried approximately for 12 h at 120 °C. The KI-impregnated activated carbon were prepared from a KI solution and AC support using an impregnation method. The KI solution was prepared by adding the required amount of KI solid to approximately 150 mL distilled water. Then, the activated carbon was dispersed to the KI solution. After stirred for 3 h, the KI-impregnated activated carbon was dried in an electricity heat drum wind drying oven at 120 °C for 14 h. The adsorbents are denoted as X% KI-AC, where X stood for the weight percentage of KI solid to activated carbon used in the sample preparation progress.

2.2. Sample characterization

The activated carbon porosity characteristics were recorded over the whole range of relative pressures at $-196\,^{\circ}\text{C}$, using a N_2 adsorption apparatus (ASAP 2020, Micromeritics Instrument Corp). The specific surface areas of the samples were measured using the N_2 adsorption isotherms with the Brunauer–Emmett–Teller (BET) method. The micropore volume was determined by the Horvath–Kawazoe (HK) method. The total pore volume was accessed from the amount of the adsorbed N_2 at p/p_0 = 0.99 from the adsorption data of the isotherm.

2.3. Experimental apparatus and removal performance measurement

The adsorption experiments were conducted in a down-flow fixed-bed quartz reactor (6 mm o.d.) as shown in Fig. 1. About 25 mg of the sample, which was laid inside a tubular furnace to regulate the reaction temperature, was used in each experiment. The feed gases consisted of O2, SO2 and NO (when used) balanced in N₂, which were accurately adjusted using mass flow controllers (MFC) with the total flow rate of 600 mL/min. An Hg⁰ permeation device (Mercury S56-HE-SR, VICI Metronics), which was sealed in a Teflon tank maintained at 53.7 °C, was used to provide a constant feed of Hg⁰ concentration. The relatively high initial Hg⁰ concentration of $145 \pm 1 \mu g/m^3$ was adopted to shorten the adsorption time during the experiments. The Hg⁰ concentrations were continuously measured using an online Hg⁰ analyzer (RA-915M+, Lumex). To prevent Hg⁰ deposition further to cause experimental errors, the pipeline system that the Hg⁰ vapour passed through was heated to approximately 60 °C. The Hg⁰ adsorbed on the pipelines were found to be less than $0.4 \,\mu g/m^3$. Before each test, all the activated carbon samples were purged by N2 for 20 min to ensure equal

Download English Version:

https://daneshyari.com/en/article/6475143

Download Persian Version:

https://daneshyari.com/article/6475143

<u>Daneshyari.com</u>