Fuel 194 (2017) 36-41

Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Full Length Article

SO_2 promotion in NH₃-SCR reaction over V_2O_5/SiC catalyst at low temperature

Shuli Bai^{a,*}, Zibo Wang^b, Huanying Li^a, Xu Xu^b, Minchao Liu^a

^a School of Chemical and Environment Engineering, Wuyi University, Jiangmen 529020, China
^b School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China

HIGHLIGHTS

• Silicon carbide supported vanadium catalysts were prepared by pore volume impregnation method.

• SO₂ show a promotion effect on the carbon-based catalyst at low temperature.

• Carbon play an important role on SO₂ promotion effect.

ARTICLE INFO

Article history: Received 5 July 2016 Received in revised form 12 December 2016 Accepted 21 December 2016 Available online 6 January 2017

Keywords: Silicon carbide SO₂ promotion NO reduction Carbon

ABSTRACT

Silicon carbide (SiC) supported vanadium catalysts were obtained using the wet chemical impregnation method, and their removal of NOx with the presence of SO₂ at low temperature was evaluated. The effect of carbon was observed by comparing different carbon-based catalysts. V_2O_5/SiC (1 wt.%) catalyst had a NOx removal efficiency of 86% in the presence of SO₂ at 250 °C with a GHSV of 180,000 h⁻¹. In this study, the temperature-programmed desorption of NH₃ (NH₃-TPD) and temperature-programmed decomposition (TPDC) of NH₄HSO₄ deposited on the catalysts and reaction were performed to determine the influence of carbon on the performance of a carbon-based catalyst in the presence of SO₂. The NO on the carbon support can effectively react with the NH₄HSO₄ formed on the catalyst surface at low temperatures. Additionally, the adsorption of NH₃ was higher on carbon-based catalyst that were pre-adsorbed with SO₂ + O₂. Thus, SO₂ promotes the activity of a carbon-based catalyst at low temperatures, and carbon has very important effect on the promotion of that activity.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Selective catalytic reduction (SCR) of NOx with NH₃ is an effective method for removing NOx from stationary sources and has a high deNOx efficiency [1]. The most widely used catalysts is V_2O_5 -WO₃(MOO₃)/TiO₂ [2]. However, to avoid generating sulfate from the reaction of SO₂ and NH₃ on the catalyst surface, the required reaction temperature for this catalyst is higher than 350 °C [3]. The SCR reactor is usually located downstream of the particle controller and deSOx device, and the temperature of the flue gas is usually lower than 300 °C. As a result, the flue gas must be reheated for deNOx, increasing the cost of deNOx. A better option would be using a low-temperature, high activity SCR catalyst. In previous studies [4–8], a couple of low-temperature deNOx catalysts had high catalytic activity for removing NOx, but their

reactions were prone to SO₂ poisoning, making their use impractical. To address this gap, other low-temperature and resistant SO₂ poisoning deNOx catalysts are needed. It was recently reported that V₂O₅/AC has good catalytic activity for removing NO [9–12], and the catalytic activity and SO_2 promotion effect of the $V_2O_5/$ AC catalyst have been extensively studied. The carbon support probably plays an important role in the SO₂ promotion effect. Our group [13,14] also demonstrated that SO₂ promotes the activity of V₂O₅/CNTs catalysts when the V₂O₅ loading weight is below 1 wt.%. Yang et al. verified that the addition of CNTs onto V_2O_5/TiO_2 catalysts improves the oxidation of NO to NO₂, promoting NOx removal [15]. Zhang et al. reported that carbon nanotubes that have been modified with CeO₂ or MnOx-CeOx can resist to SO₂ poisoning [16,17]. However, it is difficult to assess the nature of SO₂ promotion versus SO₂ poison resistance for all catalyst with carbon-containing elements. It is unclear whether the carbon element in the catalyst influences the efficacy of SO₂. Thus, it remains challenging to characterize how the carbon element content of a

catalyst influences the boost from SO_2 as well as the role of carbon in this catalytic process.

Silicon carbide has recently been studied due to its good chemical stability and thermal conductivity [18]. Because of these characteristics, SiC is widely used in catalytic reactions. It has excellent catalytic activity and high selectivity in these reactions [19,20]. Considering the advantages of SiC, the role of carbon in the removal of NO in the presence of SO₂ might be clarified by studies on SiC. In this study, silicon carbon was used for catalyst support, and we investigated the influence of carbon on the SO₂ promotion of NO reduction over V_2O_5/SiC catalyst at low temperature. It is helpful to understand the catalytic properties of carbon, which can provide a theoretical basis and technical guidance for the industrial application of carbon-based catalysts.

2. Experimental

2.1. Catalyst preparation

Raw SiC (Institute of Coal Chemistry, Chinese Academy of Science) samples, carbon nanotube (Chengdu Organic Chemistry Co., Ltd., Chinese Academy of Sciences), and SiO₂ (Shanghai Chemical Reagent Co., Ltd.) were purified using a previously published method [13]. V₂O₅/SiC catalysts were obtained by wetness impregnation method of the supports with an aqueous solution of ammonium metavanadate in oxalic acid. The V₂O₅ precursor used was ammonium metavanadate. The catalysts were dried overnight at 80 °C, and then at 110 °C for 5 h. Then, the catalysts were calcined at 500 °C for 5 h with argon stream, and pre-oxidized at 250 °C for 5 h in air. For comparison, the support of CNTs-SiO₂ was prepared by physical mixture of CNTs and SiO₂ powders and the support of SiO₂-SiC was obtained by physical mixture of SiO₂ and SiC powders. The details were as follows: 300 mg of CNTs-SiO₂-50% was obtained by mixing 150 mg of CNTs with 150 mg of SiO₂ powder thoroughly; 300 mg of SiC-SiO₂-80% was prepared by mixing 240 mg of SiC with 60 mg of SiO₂ powder thoroughly; 300 mg of SiC-SiO₂-50% was prepared by mixing 150 mg of SiC powder with 150 mg of SiO₂ powder thoroughly; 300 mg of SiC-SiO₂-20% was obtained by mixing 60 mg of SiC powder with 240 mg of SiO₂ powder thoroughly. The pore size and surface area of the catalysts were presented in Table 1.

2.2. Catalyst characterization

The characterizations of the catalysts were analyzed via scanning electron microscopy (SEM HITACHI S-4800) and Powder X-ray diffraction (XRD) patterns of catalyst samples were test on a D8 Advance X-ray diffractometer (Bruker, Germany) operated with a Cu K α radiation (wavelength 1.5406 Å) at 2.2 kW. X-ray photoelectron spectroscopy (XPS) was used on a Kratos Axis Ultra-DLD with Al K α as radiation source and calibrated with the carbon (1s) line at 284.4 eV.

Table	1
-------	---

BET surface area and pore strue	cture analyses of	catalysts
---------------------------------	-------------------	-----------

Catalyst	BET SA (m ² /g)	Total pore volume (ml/g)	Average pore diameter (Å)
CNTs	229	0.74	12.9
SiC	33.9	0.31	11
SiO ₂	269	0.25	22
CNTs-SiO ₂ -50%	245	0.42	14.2
SiC-SiO ₂ -80%	86	0.28	11.3
SiC-SiO ₂ -50%	146	0.27	13.5
SiC-SiO ₂ -20%	198	0.26	16.4

The temperature-programmed decomposition (TPDC) of NH_4 -HSO₄ deposited on the catalysts and reaction were test in a fixed-bed reactor using a previously published method [13].

2.3. Catalytic performance

SCR activity tests were performed in a fixed-bed glass reactor (6 mm inner diameter and 600 mm length). NO in Ar, SO₂ in Ar (when used), pure O₂ and pure Ar, were used to mimic the flue gas, and NH₃ in Ar was used as the reductive gas. All gases were controlled by mass flow controller and test by gas analyzer (ZR-3100TZ) that was equipped with NO, NO₂, SO₂ and O₂ sensors as well as an analyzer (PGD-100, Austria) equipped with N₂O. The reaction atmospheres conditions were as follows: 450 ppm NO, 500 ppm NH₃, 5% O₂, and 400 ppm SO₂ (when used), 300 mg of catalyst weight. The catalytic performances were tested from 150 to 250 °C, which corresponded to a GHSV of 18,000 h⁻¹ and flue gas velocity of approximately 1.8 cm/s.

3. Results and discussion

3.1. Characterization

The XPS measurements of the 15 wt.% V₂O₅/SiC catalysts are shown in Fig. 1. The V and O peaks indicate the presence of vanadium species. As shown in Fig. 1(a), there are two main V2p peaks at 517.0 eV and 524.7 eV, which correspond to the V⁵⁺(2p_{3/2}) and V⁵⁺(2p_{1/2}) of V₂O₅ [21], respectively. The V species of the catalysts were V⁵⁺. The O 1s peaks are displayed in Fig. 1(b). The O 1s spectrum has a main peak at 530.7 eV, which is attributed to O 1s in V₂O₅. Based on the XPS results, the V₂O₅/SiC catalysts of vanadium-containing species are V₂O₅.

The XRD patterns of SiC and V₂O₅/SiC are shown in Fig. 2. The peaks at $2\theta = 21.95^{\circ}$, 35.68°, 41.45°, 71.82° and 75.93° are the diffraction peaks of SiC [22]. The XRD pattern and intensity of 15 wt.% V₂O₅/SiC are similar to those of SiC, and no vanadium species were detected using XRD. The results indicate that vanadium species in 15 wt.% V₂O₅/SiC are well dispersed.

Fig. 3 shows the SEM images of the SiC and V₂O₅/SiC catalysts. it is seen that the sample mainly consists of irregular particles with size from tens to hundreds nanometers. The SEM images of the V₂O₅/SiC catalyst are similar to those for SiC, and V₂O₅ particles were not observed. This observation suggests that the vanadium species are highly dispersed.

3.2. Catalytic activity

3.2.1. SO₂ effect

The SO₂ effect on the V₂O₅/SiC catalysts with different vanadium loading levels was investigated at 250 °C (Fig. 4). At the initial state stage, there was no SO₂ in the reaction atmosphere. NO conversion reached 25.5% when only SiC, without loading V₂O₅, was used as a catalyst. NO conversion increased with increased V₂O₅ loading when the loading ranged from 1 wt.% to 15 wt.%. NO conversion reached 87.7% when V₂O₅ loading was 15 wt.%. However, NO conversion decreased when V₂O₅ loading continued to increase. The decrease in the catalytic activity might be from aggregation of vanadium particles on the silicon surface. When SO₂ was added into the reaction gas, SO₂ has no visible effect on the activity of the SiC that was not loaded with V₂O₅. However, SO₂ demonstrated a significant increase in activity with the Download English Version:

https://daneshyari.com/en/article/6475418

Download Persian Version:

https://daneshyari.com/article/6475418

Daneshyari.com