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HIGHLIGHTS

« Coal-biomass blended char was gasified with CO, in the presence of CO.

« Inhibition effect of CO on char-CO, gasification was studied.

« Langmuir-Hinshelwood (L-H) equation was used to describe the CO inhibition effect.
« Random pore model was used to interpret the carbon conversion data.

« L-H kinetic parameters were obtained and expressed in an Arrhenius equation form.
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In this study, co-gasification of coal and biomass chars with CO, in the presence of CO was investigated at
three different temperatures: 850, 875, and 900 °C. A coal-biomass (bituminous-pineapple sawdust)
mixture with a mass ratio of 1:1 was used for devolatilization and co-gasification. Random pore model
was employed to determine the kinetic coefficient from experimentally obtained carbon conversion data.
The Langmuir-Hinshelwood (L-H) equation, which has been widely used in literatures to describe the
relationship between kinetic coefficient of the gasification and partial pressures of reacting gases, effec-
tively represented the inhibition effect of CO on char-CO, gasification. The kinetic parameters of the L-H
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CoJa/\l equation were acquired from the experimental data. The activation energy (E) and pre-exponential factor
Biomass (A) of each kinetic parameter of L-H equation were obtained using the Arrhenius equation. CO inhibition

effect was more powerful in the Char-CO, co-gasification of the mixed sample compared to those in the
unmixed samples. Further, for each sample, the inhibition effect was stronger at lower temperature
owing to a smaller number of active sites.
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Active sites © 2016 Elsevier Ltd. All rights reserved.

1. Introduction satisfactorily. Our previous study investigated the coal-biomass

co-gasification in H,O-H, atmosphere and it was discovered that

Coal and biomass co-gasification is an effective approach to
reducing CO, emissions and fossil fuel dependence [1,2]. Since
the physical and chemical characteristics of coal are significantly
different from those of biomass, the design of a gasifier for co-
firing of coal and biomass requires an understanding of co-
gasification mechanisms [3,4]. Investigations on co-gasification of
coal-biomass mixed char in CO, or H,O atmosphere have been car-
ried out by different researchers [1,5-8]. In a real gasifier, however,
existence of H, and CO affects the char gasification and some stud-
ies have investigated this issue for one hundred percent coal or
biomass samples [9-14|. However, the effects of existence of H,
and CO on coal-biomass co-gasification have not yet been studied
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inhibition effect of H, was more powerful in the mixed sample
compared to those in the unmixed samples [15].

The present study, as a continuation of our previous study [15],
obtained the kinetic parameters of the Langmuir-Hinshelwood
(L-H) equation for coal-biomass co-gasification with CO,
considering CO existence. To determine the kinetic coefficient from
experimentally obtained carbon conversion data, random pore
model (RPM) was employed, as in our previous studies [15-18].

Preliminary tests were conducted to determine the experimen-
tal temperature range, and it was found that for all the char sam-
ples, gasification with CO, at temperatures lower than 900 °C
was governed by the chemical control regime. Accordingly, in this
study, all char samples were gasified with CO, at 850, 875, and
900 °C after the pyrolysis process. The results of preliminary tests,
along with the properties of coal and biomass, the experimental
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Fig. 1. Application of RPM for calculation of kco, and kcoz-co.
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Fig. 2. Plots of (a) 1/kcoz Vs. 1/Pcoz and (b) Ink; vs. 1/T.
Table 1
Kinetic parameters.
14 Ay (MPa~'s71) E,4 (k] mol™') As (s Es (k] mol ™) As (s Es (k] mol ™)
Coal 2 2.31 x 10%! 533 6.68 x 10%° 429 2 x10% -25
Biomass:Coal = 1:1 2 1.23 x 10° 162 8.23 x 107! —43 1.1 x 107! -105
Biomass 2 8.04 x 107 212 135 x 10° 38 21x10°¢ -189

setup, and the kinetic modeling, are given in the Supplementary

Material (SM).

Based on the L-H mechanism, kcoy-co can be expressed as

kC02 -0 =

K4Pco,
1+ KSPCOZ + KgPco

(1)

where K3, Ks, Kg, Pco, and Pcg are, respectively, three kinetic param-
eters and partial pressures of CO, and CO. In the experiments per-
formed without CO, Eq. (1) changes to

K4Pco,

kco, = 1+ KsPco,

)
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