FI SEVIER

Contents lists available at ScienceDirect

Fuel Processing Technology

journal homepage: www.elsevier.com/locate/fuproc

Review

High temperature solid oxide H₂O/CO₂ co-electrolysis for syngas production

Yao Wang a,b,*, Tong Liu a,b,c, Libin Lei b, Fanglin Chen b,*

- ^a School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
- b Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
- ^c Suzhou Institute of Wuhan University, Suzhou, Jiangsu 215123, China

ARTICLE INFO

Article history: Received 31 March 2016 Received in revised form 4 August 2016 Accepted 6 August 2016 Available online 14 November 2016

Keywords:
Solid oxide co-electrolysis cells
Syngas production
Chemical equilibrium model
Electrochemical performance
Degradation mechanism

ABSTRACT

High temperature H_2O/CO_2 co-electrolysis using solid oxide electrolysis cells is a promising method to produce syngas (a mixture of H_2 and CO), which can be used as feedstock of the Fischer-Tropsch reaction to synthesize value added liquid fuels. However, the overall solid oxide co-electrolysis process is complicated, involving both electrochemical reaction and reverse water gas shift reaction. The present paper offers a brief overview of the fundamental knowledge related to solid oxide co-electrolysis cells, such as working principle, thermodynamics and Nernst potentials. In addition, chemical equilibrium co-electrolysis models are reviewed, which have been developed to reveal the systematic relationship between the operating conditions and the Nernst potential as well as the gas composition evolution. Finally, the electrochemical performances recently reported on a number of solid oxide co-electrolysis cells are summarized, and cell degradation mechanisms occurred on solid oxide cells using Ni-based cermets cathode are also reviewed.

© 2016 Elsevier B.V. All rights reserved.

Contents

1.	Introduction	
2.	Description of solid oxide co-electrolysis process	
	2.1. Working principle	
	2.2. Thermodynamics	
	2.3. Nernst potential	
	2.4. Outlet gas composition	
3.	Materials for solid oxide co-electrolysis cells	
	3.1. Ni-based cathode	
	3.2. Ceramic cathode	
	3.2.1. LaCrO ₃ -based materials	
	3.2.2. $Sr_2Fe_{1.5}Mo_{0.5}O_6$	
	3.2.3. $La_xSr_{1-x}TiO_{3+\delta}$	
	3.2.4. Sr-doped LaVO $_3$	
4.	Long-term performance degradation of SOECs	
5.	Summary and future directions	
Ackı	cknowledgement	
Refe	eferences	

1. Introduction

In the past several decades, global industrialization has led to an ever-increasing demand for fossil fuels such as coal, petroleum and

 $\textit{E-mail addresses:} \ pmewy@whu.edu.cn\ (Y.\ Wang),\ chenfa@cec.sc.edu\ (F.\ Chen).$

natural gas. The burning of carbon-based fossil fuels has released a significant amount of greenhouse gases, which greatly contribute to the global warming and intense weather phenomena [1–3]. Consequently, there is an urgent need to develop environmental friendly alternatives to fossil fuels and carbon-neutral energy technologies to solve the energy and environmental problems [1,4]. Hydrogen is probably one of the most ideal energy carriers as future fuel because of its clean combustion.

^{*} Corresponding authors.

However, the well-known difficulties in hydrogen storage that need extensive technological development as well as additional hydrogen infrastructure investment slow down the path of the hydrogen fuel applications [5–7]. As a result, synthetic liquid fuels are subsequently proposed as alternatives to hydrogen because of the better storability and transportability [8,9]. The similarity of synthetic liquid fuels to current hydrocarbon fossil fuels makes them able to use the existing infrastructure for storage and transportation without too much modification. Moreover, compared to hydrogen, liquid fuels exhibit higher energy density, indicating less fuel storage volume and thus less investment cost on capital [9]. Therefore, liquid fuels are promising energy carriers for future energy application.

Recently, investments on renewable and sustainable energy sources such as wind, solar, hydra and tidal have rapidly grown to produce primary electricity [10]. However, the intermittency nature of most renewable sources has resulted in tremendous challenges in grid management. Consequently, large scale energy conversion and storage are inevitable in a sustainable future energy system [5,11]. Solid oxide coelectrolysis cell offers a promising way to convert electrical energy to chemical energy by splitting steam and CO₂ into synthesis gas (syngas, a mixture of CO and H₂), which can later be used as feedstock for the synthetic fuel production via the Fischer-Tropsch (F-T) process [6,7]. Moreover, when the power supply is lower than the demand, solid oxide cells (SOCs) could also be operated reversely to convert the chemical energy back into electricity in the solid oxide fuel cell (SOFC) mode [7,9]. Therefore, SOCs can serve as novel energy conversion device to achieve a balance between fuel production and electricity generation. Noting that the amount of CO₂ consumed in the co-electrolysis process is the same as that produced in oxidizing the synthetic fuel, an overall CO₂ neutral cycle could be established by combining the solid oxide co-electrolysis cell with CO₂ capture technologies [12,13]. Therefore, it is necessary to develop solid oxide co-electrolysis cell for large-scale application of clean energies and the reduction of CO₂ emissions.

Steam and CO₂ could be split separately and then mixed together to form syngas. However, there are some significant advantages to split steam and CO₂ simultaneously via co-electrolysis process. First of all, it is more cost effective and energy efficient to conduct the co-electrolysis due to the fast overall electrochemical kinetics [7,14]. The electrochemical performance of co-electrolysis reaction is close to that of sole steam electrolysis, but dry CO₂ electrolysis has a much higher activation energy demand due to the slow CO₂ splitting kinetics. Consequently, coelectrolysis shows a relatively lower polarization resistance and overpotential in comparison to sole CO₂ electrolysis [6,14–16]. Second, a great amount of CO₂ conversion to CO in the co-electrolysis operation proceeds in a reverse water gas shift (RWGS) chemical reaction $(H_2(g) + CO_2(g) \rightarrow CO(g) + H_2O(g))$ which results in a remarkable reduction of the total electrical consumption to produce syngas [17]. Third, carbon deposition could be effectively suppressed by introducing steam into CO₂ during the co-electrolysis process, whereas in case of dry CO₂ electrolysis, CO₂ could be deeply split to carbon, causing severe coking and loss of cell function [18,19]. Therefore, high temperature steam/ CO₂ co-electrolysis is a highly efficient technology for syngas production with lower cost and enhanced durability.

However, it should be noted that the co-electrolysis reaction which involves five gas species of CO₂, H₂, CO, H₂O and O₂ is much more complicated than sole steam or CO2 electrolysis where the RWGS reaction occurs simultaneously with the electrolysis reaction, and each of which must be properly quantified to evaluate the overall syngas production results [6,20–23]. In addition, unlike the linear correlation between current density and H₂/CO production rate described in the Faraday's law for separate H₂O or CO₂ electrolysis, the electrochemical performance and product composition are directly related to the cell operating conditions including inlet gas composition, operating temperature and applied voltage or current [24–26]. For this reason, it is not adequate to use sole parameter of current density to evaluate the electrochemical performance and product composition. Therefore, to better understand and guide the syngas production via the solid oxide co-electrolysis cell, the correlation between the operating conditions and electrochemical performance should be systematically explored, and the conventional research means for separate H₂O and CO₂ electrolysis need to be modified accordingly. Recently, a great number of researches have been focused on the electrochemical performance of the solid oxide co-electrolysis cell, although much less research has concentrated on the outlet gas composition and reaction mechanism, which require a further and more systematic study.

In this paper, working principles and thermodynamics for the coelectrolysis process are presented to provide a general overview of the solid oxide co-electrolysis technology. Models to determine the Nernst potential and outlet gas composition are highlighted to reveal the systematic relationship between the operating conditions and performance of the electrochemical cell and syngas production. Materials for solid oxide co-electrolysis cell, electrochemical performance and degradation issues of solid oxide co-electrolysis cells are also summarized. The objective of this work is to provide a brief review on recent progresses for high temperature solid oxide co-electrolysis technology.

2. Description of solid oxide co-electrolysis process

2.1. Working principle

Fig. 1 shows the working principle of solid oxide co-electrolysis cell for syngas production. A gas stream composed of steam and CO2 is supplied to the cathode, where the reactants receive electrons supplied from the external power to produce syngas (H2 and CO) as well as the oxygen ions [7].

$$CO_2(g) + 2e^- \rightarrow CO(g) + O^{2-}$$
 (1)

$$H_2O(g) + 2e^- \rightarrow H_2(g) + O^{2-}$$
 (2)

The oxygen ions are then transported across the dense electrolyte from the cathode to the anode side under the driving force of applied voltage higher than the Nernst potential to overcome oxygen partial pressure gradient, and the arrived oxygen ions are subsequently oxidized to oxygen gas, releasing the electrons.

$$20^{2-}\!\!\to\!\!O_2(g)+4e^- \tag{3}$$

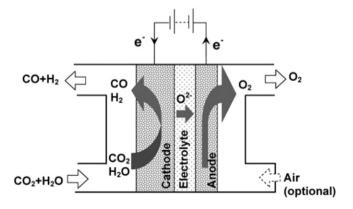


Fig. 1. Working principles of a solid oxide electrolysis cell (SOEC) for the co-electrolysis of steam/CO2 process [7].

(Reproduced from Ref. [7] with permission from The Royal Society of Chemistry).

Download English Version:

https://daneshyari.com/en/article/6476533

Download Persian Version:

https://daneshyari.com/article/6476533

Daneshyari.com