J. Chem. Thermodynamics 114 (2017) 30-43

Contents lists available at ScienceDirect

J. Chem. Thermodynamics

journal homepage: www.elsevier.com/locate/jct

Thermodynamic properties for calcium molybdate, molybdenum tri-oxide and aqueous molybdate ion

Masao Morishita^{a,*}, Yoshiki Kinoshita^b, Hiroki Houshiyama^b, Ai Nozaki^a, Hiroaki Yamamoto^a

^a Department of Chemical Engineering and Materials Science, University of Hyogo, Japan ^b Graduate Student of University of Hyogo, Japan

ARTICLE INFO

Article history: Received 28 December 2016 Received in revised form 10 May 2017 Accepted 13 May 2017 Available online 24 June 2017

Keywords: Heat capacity Standard molar entropy Standard Gibbs energy function Nuclear fuel waste glass Fission product Yellow phase

ABSTRACT

The thermodynamic properties for CaMoO₄(cr), MoO₃(cr) and MoO₄⁻(aq) were investigated. CaMoO₄(cr) is the one of the host crystals of the yellow phases which are known as hygroscopic harmful phases in the nuclear fuel glasses. MoO₃(cr) is the main component of the host crystals. MoO₄⁻(aq) is the aqueous ion present in underground water after dissolution of the yellow phases. The standard molar entropies, $\Delta_0^T S_m^\circ$, at 298.15 K for CaMoO₄(cr) and MoO₃(cr) were determined by measuring their isobaric heat capacities, $C_{p,m}^\circ$, form 2 K. Their standard Gibbs energies of formation, $\Delta_f G_m^\circ$, were determined by combining the $\Delta_0^4 S_m^\circ$ data with the reference data of the standard enthalpies of formation, $\Delta_r H_m^\circ$. The standard electrochemical potential, E° , of MoO₄⁻(aq) was determined from the thermodynamic cycle on the basis of thermodynamic properties obtained for CaMoO₄(cr) and MoO₃(cr). The unknown standard Gibbs energies of solution, $\Delta_{sln} G_m^\circ$, at 298.15 K for the actinide molybdates ThMo₂O₈(cr) and UMOO₆(cr) were predicted from the presently obtained thermodynamic data for CaMoO₄(cr), MoO₃(cr), and MoO₄⁻(aq). The obtained thermodynamic values are as follows: $\Delta_0^T S_m^\circ$ (CaMoO₄(cr), 298.15 K)/(J K⁻¹ mol⁻¹) = 122.23 ± 1.22.

$$\begin{split} & A_0^{TS_m}(\text{LMMOO}_4(\text{cr}), 298.15 \text{ K})/(\text{J K}^{-1} \text{ mol}^{-1}) = 75.43 \pm 0.75. \\ & A_0^{TS_m}(\text{MOO}_3(\text{cr}), 298.15 \text{ K})/(\text{J K}^{-1} \text{ mol}^{-1}) = 75.43 \pm 0.75. \\ & A_0^{TS_m}(\text{MOO}_4^{-}(\text{aq}), 298.15 \text{ K})/(\text{J K}^{-1} \text{ mol}^{-1}) = 32.25 \pm 4.41. \\ & \Delta_f G_m^{\circ}(\text{LMOO}_4(\text{cr}), 298.15 \text{ K})/(\text{KJ mol}^{-1}) = -1437.78 \pm 1.11. \\ & \Delta_f G_m^{\circ}(\text{MOO}_3(\text{cr}), 298.15 \text{ K})/(\text{KJ mol}^{-1}) = -667.20 \pm 0.63. \\ & \Delta_f G_m^{\circ}(\text{MOO}_4^{-}(\text{aq}), 298.15 \text{ K})/(\text{KJ mol}^{-1}) = -836.61 \pm 1.02. \\ & E^{\circ}(\text{MOO}_4^{-}(\text{aq}), 298.15 \text{ K})/(\text{KJ mol}^{-1}) = 184.84 \pm 42.48. \\ & \Delta_{sln} G_m^{\circ}(\text{ThMO}_2O_8(\text{cr}), 298.15 \text{ K})/(\text{KJ mol}^{-1}) = 68.33 \pm 34.47. \\ & \text{The present obtained data are expected to be useful for geo-chemical simulation of diffusion of radio-active elements through underground water. \\ \end{split}$$

© 2017 Elsevier Ltd.

1. Introduction

The Organization for Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) Thermochemical Database (TDB) project provides a database of chemical thermodynamic values treating the most significant elements related to nuclear waste management [1]. The thermodynamic properties for alkaline earth molybdates $SrMoO_4$ [2] and $BaMoO_4$ [3] were measured as a part of the OECD/NEA TDB Mo project in our previous studies [2–5]. Molybdenum is generated as a fission product from uranium in the operating nuclear reactor [6–12]. It is a harmful element as it

* Corresponding author. *E-mail address:* morisita@eng.u-hyogo.ac.jp (M. Morishita). forms hygroscopic crystals called yellow phase in the borosilicate nuclear waste glass. $CaMoO_4(cr)$ is one of the host crystal of the yellow phase, depending on composition [10–12]. There is immiscibility in alkali silicate [13] and alkali borosilicate glasses [6]. MoO_3 component in the borosilicate glass expands the compositional range and elevates the temperature of immiscibility [6,7,9], this means that it precipitates in the sodium- and boronrich region of the glass matrix [8]. Hyatt et al. [8] clarified that MoO_3 component in the glass, which is not immobilized within the polymeric borosilicate network, instead is likely to be located in extra-framework cavities, together with network modifier CaO component. Therefore, the yellow phase appears to be crystallized as the equilibrium phase resulting from the reaction between MoO_3 and CaO components [8–11]. To understand the phase

stability of CaMoO₄(cr), not only its thermodynamic properties but also ones for MoO₃(cr) are inevitably necessary. In the present study, the standard molar entropies, $\Delta_0^T S_m^\circ$, of CaMoO₄(cr) and MoO₃(cr) were determined by measuring the $C_{p,m}^\circ$ data from 2 K by the relaxation method [2,3,14–22] for determining their Gibbs energies of formation, $\Delta_f G_m^\circ$. Thermodynamic properties for the aqueous molybdate ion MoO₄^{2–}(aq.) were determined from the data obtained for CaMoO₄(cr) and MoO₃(cr). Unknown solubility products, K_s , and standard Gibbs energies for solution into water, $\Delta_{sln}G_m^\circ$, for strong radioactive molybdates ThMo₂O₈(cr) and UMOO₆(cr) were predicted on the basis of the thermodynamic properties for MoO₄^{2–}(aq) obtained in the present study.

Muldrow and Hepler [23] and Barany [24] investigated the standard enthalpy of formation, $\Delta_f H_m^\circ$, of CaMoO₄(cr) at 298.15 K by solution calorimetry. Gamsjäger and Morishita [4] reevaluated their thermodynamic cycles [23,24]. Weller and King [25] measured the low temperature $C_{p,m}^\circ$ of CaMoO₄(cr) at 50–300 K by the adiabatic method. Saha et al. [26] measured the change in enthalpy of as a function of temperature, $\Delta_{298.15}^T H_m^\circ$, by the drop calorimetry up to 1637 K and evaluated $C_{p,m}^\circ$ from the derivative of $\Delta_{298.15}^T H_m^\circ$ with respect to temperature. Zhidikowa and Malinin [27], Essinton [28], Grambow and Müller [29], and Felmy et al. [30], investigated the solid products, K_s and the standard Gibbs energy of solution, $\Delta_{sln}G_m^\circ$. Gamsjäger [31] reevaluated the reliable data for its K_s and $\Delta_{sln}G_m^\circ$. Gürmen et al.[32] determined the crystal structure of CaMoO₄(cr).

Moose and Parr [33], Nueman et al. [34], Staskiewicz et al. [35] and Mah [36] measured $\Delta_{\rm f} H_{\rm m}^{\circ}$ at 298.15 of MoO_3(cr) by the combustion calorimetry. Seltz et al. [37] and Smith et al. [38] measured $C_{p,m}^{\circ}$ by the adiabatic method in the ranges of 70–299 K and 18-300 K, respectively. Cosgrove and Snyder [39] measured $\Delta_{298,15}^{T}H_{m}^{\circ}$ to 1068 K by the ice calorimetry [40] and evaluated $C_{p,m}^{\circ}$. King and Weller [41] measured $\Delta_{298.15}^{T}H_{m}^{\circ}$ to 1400 K by the drop calorimetry and evaluated $C_{p,\mathrm{m}}^{\circ}$ for the solid and liquid sates, determining the melting point as 1074 K, and the enthalpy of fusion. Feiser [42] and Zelikman et al. [43] measured vapor pressures of gaseous species, $p((MoO_3)_n)$, by the boiling method. Ueno [44], Blackburn et al. [45], Gulbransen [46] and Kazena et al. [47] measured $p((MoO_3)_n)$ by the Knudsen effusion method. Ackerman et al. [48] measured $p((MoO_3)_n)$ by the transpiration method. Charlu and Kleppa [49] measured the enthalpy of vaporization, $\Delta_{vap}H_m^{\circ}$, by the drop calorimetry. Anderson and Magneli [50], and Chang and Philip [51] investigated the crystal structure of MoO₃(cr). Their structure was adopted in the data book edited by Villars and Calvert [52]. Brewer and Lamoreax [53] reviewed these studies before 1980 [80BRE/LAM]. The 3rd [54] and 4th [55] editions of NIST-JANAF data books were edited on the basis of the review by Brewer and Lamoreax [53].

Thermodynamic properties for MoO₄^{2–}(aq) were investigated by Graham and Hepler [56], O'Hare and Hoekstra [57,58], O'Hare [59], O'Hare et al. [60], Crouch-Baker and Dickens [61], and Shukla et al. [62]. $\Delta_{\rm f} H_{\rm m}^{\circ}$ at 298.15 K of MoO₄^{2–}(aq) was determined by measuring the enthalpies of reactions, $\Delta_{\rm r} H_{\rm m}^{\circ}$ of: (1) MoO₃(cr) solved into MOH (aq) (M: Li [60,62]; Na [56,61]; Rb [58]; Cs [57]) to precipitate M₂MoO₄(cr); (2) Cs₂MoO₄(cr) solved into BaCl₂(aq) to precipitate BaMoO₄(cr) [59]. Gamsjäger and M.Morishita [4] suggested the recommended datum from evaluating the weighed mean of their data [56–61].

Although a large body of literatures has been published for CaMoO₄(cr) and MoO₃(cr), their $C_{p,m}^{\circ}$ from a very low temperature have not been measured. Therefore, the present measurements from 2 K are useful in determining the $\Delta_0^T S_m^{\circ}$ data for CaMoO₄(cr) and MoO₃(cr). The $\Delta_f G_m^{\circ}$ data for CaMoO₄(cr) and MoO₃(cr) were

determined by combining the obtained S_m° data with the $\Delta_f H_m^{\circ}$ data [4,23,24,33–36]. The hierarchy of phase stabilities in the nuclear waste glasses for CaMoO₄(cr) was investigated from the presently obtained $\Delta_f G_m^{\circ}$, compared with ones of the end members of the yellow phase SrMoO₄(cr) [2], BaMoO₄(cr) [3], and the transition metal molybdates NiMoO₄(cr) [16] determined in our previous studies [2,3,16]. At the same time, the phase stabilities for the related transition metal molybdates MnMoO₄(cr) [63,64], FeMoO₄(cr) [65–69], CoMoO₄(cr) [70–72], ZrMo₂O₈(cr) [73–75], Ag₂MoO₄(cr) [76–86], as well as the actinide molybdates ThMo₂O₈(cr) [87,88] and UMOO₆(cr) [89–91] were evaluated on the basis of the presently obtained thermodynamic data.

In a conference review by Gamsjäger and Morishita [4], the thermodynamic properties for $MoO_4^{2-}(aq)$ were evaluated from the thermodynamic cycle on the basis of the values for CarMoO₄(cr), SrMoO₄(cr), BaMoO₄(cr), Ag₂MoO₄(cr) and MoO₃(cr). However, the $\Delta_0^T S_m^\circ$ data at 298.15 K for CaMoO₄ and Ag₂MoO₄ adopted in their review [4] were obtained from a private communication, and one for MoO₃(cr) was based on studies measuring $C_{p,m}^{\circ}$ over 50 K [37] and 18 K [38]. Therefore, re-evaluation of the thermodynamic properties for MoO₄²⁻(aq) is necessary. Recently $\Delta_0^T S_m^\circ$ of Ag₂MoO₄(cr) was determined in our previous study [86]. In the present study, $\Delta_{\rm f}G_{\rm m}^{\circ}$ and the standard electrochemical potential, E° , for MoO₄²⁻(aq) were determined from the present obtained $\Delta_0^T S_m^\circ$ data for CaMoO₄(cr) and MoO₃(cr) and the recently obtained $\Delta_0^T S_m^{\circ}$ of Ag₂MoO₄(cr) [86]. The unknown solubility products, K_s , for ThMo₂O₈(cr) and UMoO₆(cr) were predicted from the presently obtained $\Delta_f G_m^{\circ}$ of $MoO_4^{2-}(aq)$.

2. Experimental

2.1. Starting materials

Table 1 shows details of the samples. Commercial powders of CaMoO₄(cr) and MoO₃(cr) were used as the starting materials. Each powder was pressed in a steel die at 392 MPa to form a powder compact (φ 10 × 5 mm). The powder compacts were sintered at 807 K held for 2hr (CaMoO₄(cr)) and at 873 K held for 3hr (MoO₃(cr)) in Ar. The X-ray diffraction (XRD) patterns confirmed that the sintered bodies were composed of the mono-phase. The samples were subjected to the $C_{p,m}^{\circ}$ measurement. Pure copper (shown in Table 1) was used as the standard material. Commercial copper plate was used as the starting material.

2.2. Low temperature $C_{p,m}^{\circ}$

The heat capacities, $C_{p,m}^{\circ}$, for CaMoO₄(cr) and MoO₃(cr) were measured from very low temperature (2 K) to room temperature using a relaxation method instrument (model PPMS, Quantum Design, San Diego, CA) [14,15] as in our previous studies [2,3,16–22]. A sample is mounted with grease on a platform (3 × 3 mm²) attached to a puck with eight fine Au-Pd wire, where a heater to supply the sample Joule's heat pulse and thermometer are attached to its bottom side. Temperature increase supplied by the heat pulse is measured by the thermometer. $C_{p,m}^{\circ}$ of the sample can be determined: (Step 1) the heat capacity of the platform with grease is measured as the addenda measurement by heat pulse from the heater; (Step 2) the heat capacity of the sample and platform with grease is measured after mounting the sample on the platform. $C_{p,m}^{\circ}$ of the sample can be calculated using PPMS software which subtracts addenda measurement.

Two samples for each substance were prepared by polishing the sintered bodies with emery paper to a thickness about 0.7–1.0 mm.

Download English Version:

https://daneshyari.com/en/article/6476858

Download Persian Version:

https://daneshyari.com/article/6476858

Daneshyari.com