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a b s t r a c t

Commonly used building structures often show a hierarchic layout of structural elements. It can be ques-
tioned whether such a layout originates from practical considerations, e.g. related to its construction, or
that it is (relatively) optimal from a structural point of view. This paper investigates this question by
using topology optimisation in an attempt to generate hierarchical structures. As an arbitrarily standard
design case, the principle of a traditional timber floor that spans in one direction is used. The optimisation
problem is first solved using classical sensitivity and density filtering. This leads indeed to solutions with
a hierarchic layout, but they are practically unusable as the floor boarding is absent. A Heaviside projec-
tion is therefore considered next, but this does not solve the problem. Finally, a robust approach is fol-
lowed, and this does result in a design similar to floor boarding supported by timber joists. The robust
approach is then followed to study a floor with an opening, two floors that span in two directions, and
an eight-level concrete building. It can be concluded that a hierarchic layout of structural elements likely
originates from being optimal from a structural point of view. Also clear is that this conclusion cannot be
obtained by means of standard topology optimisation based on sensitivity or density filtering (as often
found in commercial finite element codes); robust 3D optimisation is required to obtain a usable, con-
structible (or in the future: 3D printable) structural design, with a crisp black-and-white density
distribution.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Hierarchic layouts of structural elements are commonly found
in building structures such as floors, walls and roofs. A hierarchic
structure consists of sets of structural elements and arranges a flow
of forces hierarchically from the last set on which an external load
acts via intermediate sets to the primary set which is connected to
a supporting structure. The flow of forces is stepwise being concen-
trated by each set with the aim to transfer a distributed load to a
few specific locations. For example, a floor can be spanned by pri-
mary bridging joists, secondary beams, and floor boarding, or a
cladding system via primary to tertiary elements, see Fig. 1. Using
hierarchic layouts of structural elements could very well originate
from practical considerations, e.g. in terms of construction speed
and preventing errors. Namely, its aspects of repetition allow for
standardized building methods, and errors are spotted more easily
in a repetitive system. However, a hierarchic layout of structural

elements could also be explained if it would be (relatively) optimal
from a structural point of view. The goal of the research presented
here is to investigate whether hierarchic structures can be found
using topology optimisation, and as such to demonstrate that
structural optimality is one of the contributing factors in their
design. A second goal of this paper is to demonstrate the applica-
bility of several approaches to topology optimisation in the context
of a real structural design problem.

The aim of topology optimisation is to find the optimal distribu-
tion of material in a certain design domain. In the context of struc-
tural design, minimum compliance problems are often considered.
In this case, next to the design domain, the loads and boundary
conditions are given, as well as the amount of available material,
and the aim is to find the distribution that minimizes the compli-
ance of the structure. In the density-based approach to topology
optimisation [1,2], which is one of the most widely used
approaches, the design domain is subdivided into a large number
of finite elements. A so-called density is assigned to each element.
The element densities control the distribution of material: an ele-
ment with zero density is void, an element with unit density is
solid. Intermediate densities (grey elements) are also allowed in
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order to obtain a continuous optimisation problem, but they are
penalised by a penalisation factor, see Eq. (1) in Section 2. This
penalisation factor leaves densities with values 0 and 1 unmodi-
fied, however intermediate densities are reduced. This operation
is carried out to approach a ‘‘black-and-white design”, containing
only densities with values 0 (white) and 1 (black) at the end of
the optimisation. An iterative procedure is followed to find the
optimal material distribution: for each iteration, a finite element
analysis is performed, the deformation energy per element is
determined, and the material is redistributed by moving material
from locations where the material is less efficient to locations
where the material is more efficient. In order to ensure the exis-
tence of solutions and to suppress the occurrence of checkerboard
patterns in the optimised design [3–5], filtering techniques are
commonly used. An overview paper has been published that first
summarizes existing filters and then introduces new morphology
based filters, e.g. eroding, dilating, opening, and closing morphol-
ogy filters, and compares these with existing filters like density fil-
tering, sensitivity filtering, and filters based on a Heaviside
projection [6]. Finally, topology optimisation has been used to opti-
mise all sorts of artefacts, e.g. bridges, aircraft wings, chairs and
tables, statues, etc. [7]. Other research applies topology optimisa-
tion in design process simulation e.g. for automated building spa-
tial and structural design [8]. More specifically related to this
paper, plate optimisation via topology optimisation has been stud-
ied [9,10], but they used finite elements based on plate theory.
These plate elements are 2D, and consequently do not allow for dif-
ferentiation of the material distribution over the height of the
design domain. The influence of different types of plate formula-
tion has been studied as well [11]. In order to reduce computa-
tional time, symmetry can be used [12], and useful analytical
benchmarks can be found as well [13]. Related to this a derivation
of an analytical solution is found in [14]. It can be concluded that a
number of techniques exist for topology optimisation, which have
been used for a variety of design problems. However, a study on
the optimality of hierarchic 3D structures has not yet been pub-
lished. This will be the contribution of this paper, focussing on a
standard (hierarchic) design problem: a commonly used timber
floor.

This paper is organised as follows. Sections 2 and 3 address the
optimisation of a timber floor structure using standard sensitivity
and density filtering, respectively. It is shown that these filters
do not lead to a crisp black-and-white solution. In Section 4, a
Heaviside projection is added in order to solve this problem, but
to no avail. In Section 5, a robust filter is therefore used. This filter
has originally been proposed to improve the robustness of the opti-
mised design with respect to geometric imperfections [15], but it
has been shown to lead to very crisp black-and-white designs in si-
tuations where all other filters fail [16]. Also for the standard prob-
lem considered in the present paper (a timber floor), the robust
filter performs very well. In Section 6, the optimised floor designs

are discussed, and in Section 7, three additional applications are
considered: a floor with an opening, two floors that span in two
directions, and an eight-level concrete building. Finally, Sections
8 and 9 present a discussion, and conclusions and recommenda-
tions respectively.

2. Sensitivity filtering

The focus of this paper is on a standard (hierarchic) design
problem: a commonly used timber floor that consists of bridging
joists with a cross-section of 38 � 235 mm and a centre to centre
distance of 300 mm [17]. The span length equals 5.0 m and the
floor boarding has a thickness equal to 18 mm. The design modulus
of elasticity is 6000 N/mm2 and the Poisson’s ratio is assumed to be
0.3. The floor is loaded with a uniformly distributed load pd equal
to 3.0 kN/m2 and is simply supported; see Fig. 2.

The design domain used to formulate the optimisation problem
is defined based on the geometry of the timber floor described
above. Symmetry is used to reduce computational costs by mod-
elling half the floor joists’ span length. An intermediate part of a
wider floor is modelled: symmetry conditions are applied at the
left and right side, resulting in a model of an infinitely wide floor
(see Fig. 3).

In this section, the optimisation problem is solved by means of a
sensitivity filtering based approach as described by [1]. The prob-
lem is formulated as follows:

min
x

cðxÞ ¼ uTKu ¼
Xn
e¼1

ðxeÞpuT
eE0Keue ð1Þ

subject to:

VðxÞ
V0

¼ f ð2Þ

0 < xmin 6 xe 6 1 ð3Þ
where the displacements u are found by solving the system of equi-
librium equations:

Ku ¼ f ð4Þ
In Eqs. (1)–(4), the objective is the minimisation of compliance c,
which is related to the total strain energy over all elements, the lat-
ter expressed as a function of the global displacement vector u and
global stiffness matrix K. In the objective function, e is a finite ele-
ment identifier, n the total number of elements, and xe is the density
of element e, where all densities are combined in a vector x. The
variable p is a penalisation factor, ue is the displacement vector of
an element and Ke is an element’s stiffness matrix (without Young’s
modulus E0, which is separately added in the equations, for conse-
quent definitions in subsequent sections). The constraint in Eq. (2)
keeps the ratio between the structural volume (being a function

Fig. 1. On the left three levels of hierarchy: bridging joists on corbels, secondary beams, and floor boarding (hidden by plaster), Old Town Hall, Beek, The Netherlands. On the
right a schematic view of a cladding system with four levels of hierarchy.
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