
Full length article

Automated transformation of design text ROM diagram into SysML
models

Wei Wan a, Hyunmin Cheong b, Wei Li b, Yong Zeng a,⇑, Francesco Iorio b

aConcordia Institute for Information Systems Engineering, Concordia University, Montreal, QC, Canada
bAutodesk Research, Toronto, ON, Canada

a r t i c l e i n f o

Article history:
Received 9 February 2016
Received in revised form 4 July 2016
Accepted 20 July 2016
Available online 6 August 2016

Keywords:
Design text
SysML
Recursive Object Model (ROM)
Knowledge extraction
Model transformation

a b s t r a c t

This paper proposes an approach to generating System Modeling Language (SysML) diagrams from a
Recursive Object Model (ROM) diagram. The ROM diagram represents entities (or concepts) and three
kinds of relations between these entities found in a description text. The generated SysML models include
block definition diagram, use case diagram, and activity diagram. Since the SysML is becoming a standard
modeling language for specifying, analyzing, designing and verifying complex design in many industry
sectors, this transformation process supports knowledge representations of design documents for next
generation CAD systems. The proposed approach first analyzes the features of ROM and SysML diagrams
and then defines transition rules that transform a ROM diagram into SysML models. A software prototype
ROM2SysML is developed based on the proposed approach and two examples are used to demonstrate
how the prototype works.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last four decades computer aided design and engineer-
ing (CAD/E) systems have enabled engineers to design and develop
products that can serve their customers in a more effective and
efficient manner. For next generation CAD/E systems, knowledge
is expected to play an increasingly important role [1,2]. General
knowledge about design includes specifications, design rules, con-
straints, and rationale [1]. Exchange and reuse of knowledge can
speed up the design process with good quality assurance. One
recent trend in CAD/E is managing tasks from different engineering
disciplines to support design beyond modeling and analyzing
geometries with an extensive knowledge base [3].

Many design theorists agree that a design process can be
viewed as a stepwise, iterative, evolutionary transformation pro-
cess [4–7]. In this recursive design process, designers typically
use natural language to describe design systems, particularly at
an early stage. However, the ambiguity, incompleteness, and com-
plexity of natural language present challenges in retrieving and
reusing the knowledge, analyzing design solutions against design
documents, and managing design changes. Hence, formal repre-
sentation of description text is preferred. As a result, the objective
of the current research is to extract structural and behavioral
knowledge from system description text and to transform them

into conceptual models expressed in SysML [8]. SysML is a graph-
ical modeling language used to support model-based systems engi-
neering. It is developed to meet the evolving standard ISO 10303
AP233 [9] that is a widely accepted specification language for the
exchange of product specifications [10]. CAD systems use this
standard to exchange data as well. SysML includes nine different
diagrams, which are requirement diagram, activity diagram,
sequence diagram, state machine diagram, use case diagram, block
definition diagram, internal block diagram, parametric diagram,
and package diagram. Those diagrams formalize system require-
ments, structure, behavior, and parametric constraints [8]. Various
diagrams in SysML allow engineers to view a design system from
different perspectives.

Researchers have investigated approaches to extracting and
transforming requirements described in natural language into a
formal conceptual model. Luisa et al. reviewed the challenge on
existing work in using linguistic instruments to support require-
ments analysis and to transform natural language based design
requirements into more formal and structured specifications [11].
Mens and van Gorp used linguistic tools for endogenous or exoge-
nous transformation in the requirements elicitation phase to clar-
ify the ambiguities and contradictions in design documents [12].
Other approaches for the direct transformation from design docu-
ments to a formal conceptual model include Data Model Generator
(DMG) proposed by Tjoa and Berger to transform requirement into
concepts of the EER model [13] and Natural Language to Object
Oriented Design Models (NL-OOML) by Mala and Uma [14]. The

http://dx.doi.org/10.1016/j.aei.2016.07.003
1474-0346/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: yong.zeng@concordia.ca (Y. Zeng).

Advanced Engineering Informatics 30 (2016) 585–603

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier .com/ locate/ae i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2016.07.003&domain=pdf
http://dx.doi.org/10.1016/j.aei.2016.07.003
mailto:yong.zeng@concordia.ca
http://dx.doi.org/10.1016/j.aei.2016.07.003
http://www.sciencedirect.com/science/journal/14740346
http://www.elsevier.com/locate/aei


success of these efforts largely depends on the accurate semantic
analysis of natural language texts [15].

Two alternatives were identified to overcome the challenges in
the direct transformation [16]. The first alternative aims to describe
the requirements using a controlled language. Cheong et al. pro-
posed using a controlled natural language (CNL), which is a subset
of a natural language that restricts certain syntax and lexicons, as
an input tool for CAD system [17]. Through limited syntax and lexi-
cons, ambiguities in natural language can be removed and a CNL can
be translated automatically into a formal target language for reason-
ing. Sarkar et al. used a CNL to input software requirements for their
‘‘DesignAssistant Tool” [18]. Commercial requirementmanagement
tools, such as IBM Rational DOORS [19], leverage the document
structure and user added rules to semi-automatically extract design
requirements from a design document. However, using a CNL is
challenging because it is typically restricted to a specific problem
domain and requires expert knowledge to develop and to maintain.

The second alternative is the introduction of an intermediate
model that can bridge a natural language and a conceptual model.
As a result, the transformation process is divided into two steps:
the first is to transform a natural language text into an intermedi-
ate conceptual model and the second is to develop formal design
models from the intermediate conceptual model. ROM (Recursive
Object Model) is such an intermediate model to process a natural
language text [20]. Compared with other linguistic models, such
as the Stanford parser, which uses 42 dependencies to express uni-
versal relations [21], the simplicity of the ROMmakes it possible to
develop a complete set of rules for model transformation algo-
rithms. ROM has been successfully applied to requirements elicita-
tion [22], model transformation [23,24], product requirements
translation [25] and mental stress analysis [26].

The contribution of this present research lies in the transforma-
tion of a design text into formal structured models in SysML
through the ROM diagram corresponding to the design text. We
define the transformation rules for mapping ROM diagrams into
SysML diagrams. Currently, the transformation rules include three
subsets: rules respectively for block definition diagram (BDD), use
case diagram, and activity diagram. Blocks are basic structural ele-
ments in SysML that provide unifying concepts to describe the
structure of elements or systems. A block definition diagram
describes the relationships among blocks. Use case and activity
diagrams are behavioral diagrams. A use case diagram presents
basic functionality in terms of usages of the system by actors. An
activity diagram specifies transformation of inputs to outputs
through a controlled sequence of actions. Although many research-
ers have investigated transformations from natural language into
formal models, most of them focus on transforming user require-
ments into structure diagrams such as a block definition diagram
in SysML or a class diagram in UML [18,23,27–30]. In addition to
the block diagram, we attempt to capture system behaviors and
to generate use case and activity diagrams.

The rest of this paper is organized as follows. Section 2 reviews
Recursive Object Model (ROM) and System Modeling Language
(SysML). Our main work is presented in Sections 3–5. We define
transformation rules in Section 3 and present a software prototype
developed to deploy these algorithms in Section 4. Then Section 5
uses two examples to illustrate the implementation of the transfor-
mation process. General discussion is provided in Section 6. We
conclude the paper and list future directions in Section 7.

2. Preliminary

2.1. Recursive Object Model (ROM)

We use recursive object model (ROM) as our input model to
represent a description text. Instead of using syntactic pattern

recognition techniques that depend on the structural information
for classification and description, ROM captures the semantic infor-
mation of a natural language based on computational linguistic
techniques. Depending on axiomatic theory of design modeling
[31], ROM represents and reasons about object structure for
description text recursively. Zeng has illustrated that ROM is suffi-
cient to represent a natural language [32].

2.1.1. ROM overview
ROM is a linguistic model for representing natural language.

Unlike Entity-Relation model, in which objects are directly sup-
ported in database schema and in the query language, objects in
a ROM diagram are basic units and connect with other objects to
generate new objects recursively. Relations in ROM are also objects
and are of only three basic types. Table 1 shows the elements of
ROM and their graphical representation. Any object can be repre-
sented in ROM with only three basic relations listed below:

1. Constraint relation is a modification relation of one object to
another. The constraining object modifies the meaning of the
constrained object. In a ROM diagram, an arrow with a dotted
head is used to represent a constraint relation.

2. Predicate relation describes an act of an object on another or
describes a state of an object. A predicate relation modifies
the meaning of both objects in the relation. A solid arrow is
used to represent a predicate relation in a ROM diagram.

3. Connection relation connects two objects that do not constrain
each other. A connection relation does not modify either of the
two objects in the relation. In a ROM diagram, a connection
relation is represented by a dashed arrow.

In this paper, we use Cs;Cn, and V to represent ‘‘Constraint”,
‘‘Connection”, and ‘‘Predicate” relations, respectively. For example,
a Connection relation between object 1 ðO1Þ and object 2 ðO2Þ can
be denoted by CnðO1;O2Þ; a direct constraint relation to object 1
ðO1Þ from object 2 ðO2Þ is denoted by CsðO2;O1Þ; the constraint rela-
tion to noun object ðN1Þ from noun object ðN2Þ through a preposi-
tion object ðPÞ is denoted by CsðN1; P;N2Þ; a predicate relation
directed from object 1 ðO1Þ to object 2 ðO2Þ through a verb v is
denoted by VðO1;v ;O2Þ. Fig. 1 shows the ROM diagram of the sam-
ple text below:

The blades of a blender are constructed of stainless steel for
durability and maximum sharpness.

In Fig. 1, the object ‘‘The” constrains the object ‘‘blades” using an
arrow with a dotted head, which indicates that ‘‘The” has a
constraint relation with ‘‘blades”. The object ‘‘blades” and the
object ‘‘steel” are related through a predicate relation ‘‘constructed
of”, which is represented by a solid arrow. Formally, we use

Table 1
Elements of ROM [32].

Type Graphic
representation

Definition

Object Object Everything in the universe is an
object

Compound
object

It is an object that includes at
least two other objects in it

Relations Constraint It is a descriptive, limiting, or
particularizing relation of one
object to another

Connection It is to connect two objects that
do not constrain each other

Predicate It describes an act of an object on
another or that describes the
states of an object

586 W. Wan et al. / Advanced Engineering Informatics 30 (2016) 585–603



Download	English	Version:

https://daneshyari.com/en/article/6478437

Download	Persian	Version:

https://daneshyari.com/article/6478437

Daneshyari.com

https://daneshyari.com/en/article/6478437
https://daneshyari.com/article/6478437
https://daneshyari.com/

