Applied Energy 190 (2017) 800-812

Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation

Jyri Salpakari*, Topi Rasku, Juuso Lindgren, Peter D. Lund

New Energy Technologies Group, Department of Applied Physics, School of Science, Aalto University, P.O.Box 15100, FI-00076 AALTO (Espoo), Finland

HIGHLIGHTS

• A new optimal control model of a microgrid with smart PEVs and space heating.

- Battery degradation and thermal dynamics of PEVs and buildings included.
- A case study on 1-10 houses with empirical data from Southern Sweden.

• 8-33% cost savings with optimal control compared to energy-efficient baseline.

• Battery degradation cost significantly decreases the added value of vehicle-to-grid.

ARTICLE INFO

Article history: Received 19 August 2016 Received in revised form 29 December 2016 Accepted 4 January 2017 Available online 12 January 2017

Keywords: Energy management Net zero energy Photovoltaics Electric vehicles Space heating load control Linear programming

ABSTRACT

With the increasing penetration of distributed renewable energy generation and dynamic electricity pricing schemes, applications for residential demand side management are becoming more appealing. In this work, we present an optimal control model for studying the economic and grid interaction benefits of smart charging of electric vehicles (EV), vehicle-to-grid, and space heating load control for residential houses with on-site photovoltaics (PV). A case study is conducted on 1–10 net zero energy houses with detailed empirical data, resulting in 8–33% yearly electricity cost savings per household with various electric vehicle and space heating system combinations. The self-consumption of PV is also significantly increased.

Additional benefits through increasing the number of cooperating households are minor and saturate already at around 3–5 households. Permitting electricity transfer between the houses and EV charging stations at workplaces increases self-sufficiency significantly, but it provides limited economic benefit. The additional cost savings from vehicle-to-grid compared to smart charging are minor due to increased battery degradation, despite a significant self-sufficiency increase. If the optimization is conducted without taking the battery degradation cost into account, the added monetary value of vehicle-to-grid can even be negative due to the unmanaged degradation. Neglecting battery degradation completely leads to overestimation of the vehicle-to-grid cost benefit.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

* Corresponding author.

Concerns about climate change drive the use of variable renewable energy (VRE) in electricity production, most notably solar and wind generation [1]. Without additional flexibility, large scale VRE generation cannot be fully utilized without compromising power system reliability and safety [1].

AppliedEnergy

E-mail address: jyri.salpakari@aalto.fi (J. Salpakari).

Nomenclature

Abbreviations		w	indicator of vehicle location at workplace charging sta-
A/C	air conditioning		tion
BEV	battery electric vehicle	у	electricity transmission to workplace indicator
CHP	combined heat and power	Z	battery ageing model fitting parameter
COP	coefficient of performance	α	coefficient of performance
DHW	domestic not water	α_c	battery ageing model fitting parameter
DOD	depth of discharge	P	hattary agoing model fitting parameter
	athanal fuel mixture with 10% athanal	ρ_c	matrix in analytic solution of differential equation
	ground source best nump	N N	hattary againg model fitting parameter
	besting ventilation and air conditioning	l c c	matrix in analytic solution of differential equation
ICF	internal combustion engine	ť	matrix in analytic solution of differential equation
IMO	lithium manganese oxide	n	efficiency
IP	linear programming	ĸ	supply water temperature coefficient of the heating sys-
MG	microgrid		tem
MILP	mixed-integer linear programming	Λ	effective surface area of vehicle cabin
net-ZEB	net zero energy	μ	air exchange rate
NMC	nickel manganese cobalt	V	battery self-discharge rate
PDF	probability density function	τ	supply water temperature constant of the heating sys-
PEV	plug-in electric vehicle		tem
PHEV	plug-in hybrid electric vehicle	$\bar{\upsilon}$	total heat transfer factor to interior from radiant floor
PV	photovoltaic	Φ	total thermal power
RE	renewable energy	ϕ	thermal power
SC	smart charging	φ	passive heat gain
SEA	Swedish Energy Agency	Ψ	total electric power in electric heating or cooling
SHLC	space heating load control	ψ	electric power in electric heating or cooling
SOC	state of charge of battery		
TRNSYS	Transient System Simulation Tool	Subscript	s and superscripts
V2G	vehicle-to-grid	0	reference value
VRE	variable renewable energy	+	charging, heating
		-	consumption, cooling, discharging
Symbols		ас	activation
Α	surface area, heat transfer and capacity matrix	app	appliance
a_c	capacity severity factor in battery ageing model	D	Dattery, Duy
В	heat transfer and capacity matrix	C coll	call
D	battery ageing model mung parameter	Cell	Carnot
C	neal capacity battery agoing model fitting	d	degradation
ι	specific field capacity, battery ageing model fitting	u do	door
D	power draw required by FV driving	dhw	domestic hot water
F	energy	e	exterior (ambient air)
F	fuel energy	F	fuel
f	probability density function	f	fee, floor
G	grid or market interaction power	, fl	floor
g	vehicle grid-connection indicator	g	ground, going to work
H	heat transfer coefficient	HVAC	heating, ventilation and air conditioning
h	height	h	house
i	general integer index	i	interior
J	ampere-hour throughput	in	inlet
j	general integer index	т	market
k	general integer index	тах	maximum
L	battery capacity loss ratio	min	minimum
Ν	number	ppl	people
Р	electric power	r	retail, returning from work
р	price, cost	ro	root
Q	ampere-hour capacity of battery	S	sell
Kg	universal gas constant	sol	SOIAF
r	driving mode parameter in PEV battery ageing model	sup	suppry
2	electric power for vehicle charging or discharging in	system	
SOC	nome grid	rej	reference value
SUL T	State-OI-Clidige	V 147	work
1 t	time	wa	work wall
L II	unic voltage II-value	wi	window
V	volume	***	······································
*	volume		

Download English Version:

https://daneshyari.com/en/article/6478603

Download Persian Version:

https://daneshyari.com/article/6478603

Daneshyari.com