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h i g h l i g h t s

� We present a new methodology to estimate power capacity profiles.
� We use a classification approach to estimate the capacity.
� Our methodology works with an existing demand-side management module.
� We take advantage of the structure of the problem.
� We report the performance of our approach on a real-world-based scenario.
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a b s t r a c t

This paper presents a new methodology for the estimation of power capacity profiles for smart buildings.
The capacity profile can be used within a demand-side management system in order to guide the building
temperature operation. It provides a trade-off between the quality of service perceived by the end user
and the requirements from the grid in a demand-response context. We use a data-fitting approach and
a multiclass classifier to compute the required profile to run a set of electric heating and cooling units
via an admission control module. Simulation results validate the performance of the proposed method-
ology under various conditions, and we compare our approach with neural networks in a real-world-
based scenario.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the context of power systems, reducing peaks and the fluctu-
ation of consumption brings stability to the system and benefits to
the players in the power supply network. In this respect, demand-
response (DR) programs and demand-side management (DSM)
systems encourage and facilitate the participation of the end users
in the grid decisions. This participation is increasing with the
development and implementation of smart buildings. DR programs
have mostly been oriented to large consumers, but smart buildings
can exploit the DR potential in residential and commercial build-
ings as well. These represent around 70% of the total energy
demand in the United States [1]. In Canada, space heating is
responsible for more than 60% of the total residential energy con-
sumption, due to the cold climate [2]. Across the country, electric

baseboards account for 27% of heating equipment, reaching 66%
in the province of Quebec. On the other hand, the province of
Ontario is typically a summer-peaking region due to the high tem-
peratures during that season and the high penetration of air-
conditioning systems [3,4].

Several authors have published DSM-related results. Normally
their research motivation is oriented to load management, user
behavior, cost performance, and curve shaping. Imposing a capac-
ity constraint is a common idea among these approaches. Costanzo
et al. [5] propose a multilayer architecture that provides a scheme
for online operation and load control given a maximum consump-
tion level. In the stochastic DSM program in [6], a DR aggregator
imposes a capacity constraint. Bidding curves and price analyses
are reported in order to guide end-users about increasing capacity.
Rahim et al. [7] evaluate the performance of several heuristic-
based controllers. They define the load management as a knapsack
problem with preset power capacities for each time slot. In a
similar way, [8] assumes a consumption limit that allows the
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activation of only one load at a time. Li et al. [9] look for an optimal
allocation of capacities based on a queueing strategy. The service
provider determines the capacity to assign to each user from a
set of renewable resources.

The idea of capacity subscription is explored in [10], where the
individual consumer’s demand is limited in a competitive market.
On the other hand, the heuristic algorithm proposed in [11] aims to
minimize the error between the actual power curve and the objec-
tive load curve by moving the shiftable loads. In this case the
objective load curve can be seen as a soft constraint capacity
profile.

A variation of the capacity limit is presented in [12], where each
individual user has a predefined budget to maximize his/her
satisfaction.

All the approaches mentioned represent the capacity as a given
parameter, and some of them recognize the importance of using a
forecasting tool to determine its value. Estimating the user con-
sumption is a key step in the decision-making process for users
and for higher levels in the power system. Relevant publications
can be found in the load-forecasting literature. Suganthi and
Samuel [13] give a comprehensive review of forecasting methods
from classical time series to more sophisticated machine learning
tools.

Load estimation methods are classified depending on the level
of aggregation of the input data: they can be bottom-up or top-
down [14]. Bottom-up models extrapolate the behavior of a larger
system based on its inner elements. Top-down models make deci-
sions from a global perspective and share them among all the
subsystems.

Within these two categories different approaches have been
used to estimate the energy demand. Ahmed et al. [15] compare
artificial neural networks and the auto regressive integrated mov-
ing average, showing the effect on the scheduling of storage
devices. Jain et al. [16] use support vector regression to evaluate
the impact of the time and space granularity inside a multi-
family unit. Al-Wakeel et al. [17] use a k-means-based load estima-
tion method to compute future load profiles using complete and
incomplete past information.

Logistic and Poisson regression are used in [18] to estimate
energy demand in a large aggregated population. In a similar
way, [19] presents a short-term forecasting method for aggregated
loads, specifically in buildings with daily or seasonal patterns of
consumption. Mohajeryami et al. [20] present an error analysis
for different load estimation methods that are used in real-world
operations. They highlight the importance of an accurate estima-
tion for exploiting the DR potential.

On the other hand, when the prediction output belongs to a
discrete set of categories the estimation can be defined as a
classification problem. Some related energy problems are treated
in this way: price forecasting in [21] and wind power ramp events
in [22].

This paper proposes an approach for the estimation of a power
capacity profile that works in combination with the admission con-
troller (AC) module presented in [5]. This profile is used to ensure
enough power to meet the demand for the next planning horizon
(e.g., the next day in a day-ahead DR market). This novel approach
takes advantage of the structure derived from the estimation prob-
lem to compute capacity profiles efficiently and reliably. Estimat-
ing the capacity that will be necessary allows us to define a
relationship between the total expected demand and the level of
service the user desires while providing DR. In this scenario the
user will book a variable maximum power capacity per time frame
over the planning horizon, ensuring a pre-established level of ser-
vice. This approach could also include external factors such as peak
control and pricing policies. The motivation is that a defined power
budget limits the consumption and encourages load shifting. It also
facilitates the integration of differential pricing for both energy and
power.

This paper is structured as follows. We describe the proposed
methodology in Section 2. We give simulation results for the
real-world-based scenario in Section 3, and Section 4 presents
our conclusions.

2. Power capacity profile

Fig. 1 shows the application of the AC module presented in [5].
The online algorithm in the AC has four stages. First, the space

Notation

h 2 f1;2; . . . ;Hg set of time frames in horizon
t 2 f1;2; . . . ; Sg set of time steps in time frame h (same for every h)
i 2 f1;2; . . . ; Ig set of loads
Nh number of requests received in time frame h
Pi power level of load i (kW)
Ch power capacity in time frame h (kW)

ri;t
1 if a request is created by load i in time step t
0 otherwise

�
xi;t

1 if request from i is accepted in time step t
0 otherwise

�

QoSh quality of service in time frame hdQoSh quality of service of the prediction model in time frame
h

T temperature (�C)
Te
h external temperature in time frame h (�C)

P power levels of the loads in each scenario
X discrete set of capacities
x 2 X capacity class

Fig. 1. Admission controller.
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