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a b s t r a c t

The calculation of solar flux density is a key work for the design and optimization of solar tower system.
Because of the great amount of calculation, the source distribution is often regarded as a radial distribu-
tion, which is not consistent with the reality. This paper presents a new method to calculate the flux
density distribution by a focusing heliostat with an elliptical Gaussian distribution source. The two-
dimensional convolution integration is proposed and converted into a one-dimensional integration.
We use the Gauss-Legendre integration method to reduce the amount of calculation and accelerate the
speed of integration. This method can be used to calculate the solar flux at image and receiver plane
by most of the heliostat. It needs only 0.1% time of the ray tracing method for calculating the efficiency
of the heliostat. It can be applied for design optimization of the solar heliostat field which is superior to
the present methods in both accuracy and computation requirements.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Solar tower system uses a lots of heliostats to reflect the solar
energy to a central receiver, which is one of the potential solar
energy technology [1,2]. We need to calculate the solar flux at
the receiver to predict the temperature of the receiver [3], and pre-
vent the flux density being more than the receiver’s tolerance limit
[4–6]. We should also calculate the solar energy intercepted by the
receiver [7] from the energy flux density distribution to evaluate
system performance, and optimize the system design. Therefore,
the test and calculation of the solar flux density distribution pro-
duced by a single heliostat, is one of the critical steps for develop-
ing solar tower systems [8]. To simulate them, many codes have
been developed since the mid-seventies by different groups [9].
They divide into two main types according to their calculation
method [10]: convolution-based and ray-tracing.

Ray tracing is an ordinary method for heliostat study [11] or other
concentrated solar collector [12], which tracks the solar ray path
reflected by the reflector in the system and the receiving surface
position they reach, the solar intensity distribution at any surface
can be calculated with a high degree of flexibility to adapt to various
situations, and programming is simple for obtaining a reliable result.
For example, recently, it was applied to study the solar flux formed
by a non-imaging focusing heliostat [13]. The disadvantage is that it
needs more computing resources to obtain highly accurate and con-
sistent calculation results than the convolution-based methods, not
suitable for system optimization [14] although the Monte Carlo
Ray-Trace (MCRT) method may reduce computation resources [15].

Convolution-based integration method requires less computing
resources, and thus subjects to researchers’ attention. As the solar
ray reflected by a point of the heliostats from different solar posi-
tion will reach to different positions of the receiver surface, plus
dispersion caused by the optical error, we need to calculate the
solar intensity which reached the specific position from all the
reflection points on the heliostats by integration to obtain the solar
energy density. We can first calculate the solar flux at the image
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surface and then project to the receiver surface [16], or calculate
the solar flux at the receiver surface directly.

Lipps [17] summarizes the four types of convolution integral
expressions. Based on the convolution integral expressions, many
methods and codes have been developed to calculate the solar flux [9].

For the flat heliostats, Walzel et al. [18] applied polynomial to
simulate the radial distribution of source, and used Hermite function
expansion to establish a numerical method for the calculation of the
convolution integral of polygonal reflectors. Lipps and Walzel [19]
developed an analytical method for solving the convolution integral
for polygon flat heliostat based on the radial distribution. However,
this method requires careful distinction of the positional relationship
between the image plane of the projection heliostats and the image
of the solar disk. Although the calculation is of high precision, the
calculation speed is slower than Hermite function. For a round helio-
stat, it was pointed out that the analytical calculation is unattractive
due to the complex quartic integration [19].

For a focusing heliostat, Lipps [14] considered brightness distri-
bution of both solar disk and solar aureole, to convolute it with cir-
cular Gaussian error distribution to obtain a radial source, and
develop numerical methods for calculation of the reflected light
intensity distribution. It can obtain the exact solution, but the cal-
culation process is rather complicated and high accuracy needs
great computation. Hennet and Abatut [20] developed an analyti-
cal equation to describe the convolution of rectangular spherical
heliostats for the solar flux density on the image plane without
considering the optical error distribution, thus the calculation is
fast. Collado et al. [21] applied a circular Gaussian distribution to
describe source brightness distribution, and developed a one-
dimensional integration for the solar flux density on the image
plane produced by a rectangular focusing heliostat. Elsayed and
Fathalah [22] developed a numerical procedure to predict the solar
flux density distribution on the receiver surfaces by using variable
separation and superposition technique, it is based on the convolu-
tion integral equation for solving intensity distribution which can
be used to analyze the flat and focusing rectangular heliostat, the
shading and blocking can also be considered, different radial
source brightness distribution can be applied.

For a round heliostat, Lipps [17] has also shown that the convo-
lution integral expressions can be applicable to the focusing round
heliostat, and the numerical method has been developed in RCELL
codes of the University of Houston [23]. But they apply radial
Gaussian distributions to describe the reflected solar brightness
distribution to reduce the computational expense.

Typical applications for the convolution methods are field layout
optimizations and system performance estimations. The inaccuracy
of the convolution methods are often ignored as main errors for per-
formance prediction of solar tower system do not come from the
optical model but from the other component such as the storage,
and turbine [9]. However, recent developments, such as layout opti-
mization of the field, aiming strategy optimization to avoid toomuch
more flux density and improve the flux distribution [5], require high
accuracies and fast computations [24,25].

The reflected solar ray is closer to an elliptical Gaussian distri-
bution which is known for many years [26,27]. Collado [8] evalu-
ated it with the experimental data to show that the maximum
relative error is more than 10% for interceptor calculation of a rect-
angular heliostat with a circular Gaussian distribution source. The
main reasons include, the first, the main optical error, the slope
error of the optical system is elliptical Gaussian distribution [28],
not circular Gaussian distribution, which leads to an elliptical
Gaussian distribution of reflected solar brightness. The second,
even the slope error distribution is circular Gaussian distribution,
when the incident angle is more than 0, which is the ordinary case
in solar tower system, the reflected solar brightness is still more
closer to an elliptic Gaussian distribution [29,30].

So we should apply the elliptical Gaussian distribution to
describe the reflected solar brightness distribution for solar flux
density distribution calculation. In Helios code [27], an algorithm
based on the two dimensional fast Fourier transform is applied
to solve the more general convolution integration, including the
elliptical Gaussian distribution for various heliostats. But computa-
tionally intensive, it consumes a lot of computer resources, the
actual code is rarely used especially for optimization [9].

In this paper, we present a new numerical method to calculate
energy flux density distribution by a focusing heliostat with the
elliptical Gaussian distribution sources for improving the calcula-
tion accuracy and speed. The application of the methods to the effi-
ciency calculation and design optimization is also analyzed and
compared with the other methods.

2. Model

2.1. Model theory

We started from the reflected solar intensity distribution to cal-
culate the solar flux formed by a heliostat. We first analyze the

Nomenclature

B distribution function of reflected sun brightness (W/m2/
rad)

C CR ⁄ I0
CR the concentration ratio of heliostats
DNI the direct normal irradiance (W/m2)
F solar flux (W/m2)
I the normalization constant for solar brightness distribu-

tion model
I0 the intensity of reflected light (W/m2)
l the distance from a point at image plane to the reflec-

tion point
M function of the heliostat image at image plane
O the central point of the image of the heliostat
P a point at the heliostat
Q a point at the image plane for flux calculation
r the radial coordinate variable
r0 the distance between the point of O and Q

rA, rB the integration range at r direction
R the image radius of the round heliostats at image plane
R0 the radius of the round heliostats (m)
S the scope of integration = the circle image of heliostats

in the image plane
x0, y0, x, y coordinate

Greek symbol
c incident angle of solar ray to the heliostat
h radial angular displacement or angular displacement in

transverse direction (rad)
u0 limits of the integration at angle direction (rad)
q the reflectivity of the heliostat
rtx the standard deviation of the Gaussian distribution at x

direction
rty the standard deviation of the Gaussian distribution at y

direction
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