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a b s t r a c t

This paper presents a new data-driven method for learning personalized thermal preference profiles, by
formulating a combined classification and inference problem, without developing different models for
each occupant. Different from existing approaches, we developed a generalized thermal preference
model in which our main hypothesis, “Different people prefer different thermal conditions”, is explicitly
encoded. The approach is fully Bayesian, and it is based on the premise that the thermal preference is
mainly governed by (i) an overall thermal stress, represented using physical process equations with
relatively few parameters along with prior knowledge of the parameters, and (ii) the personal thermal
preference characteristic, which is modeled as a hidden random variable. The concept of clustering oc-
cupants based on this hidden variable, i.e., similar thermal preference characteristic, is introduced. The
results, based on a dataset collected from a typical office building population, show clear evidence of the
existence of multi-clusters; in particular, the 5-cluster model performed best compared to 2, 3 and higher
cluster models using the studied dataset. Subsequently, the thermal preference of a new occupant in the
dataset is inferred by using a mixture of the general sub-models for each cluster. The results show that
the method developed in this study provides accurate predictions for personalized thermal preference
profiles and it is efficient as it only requires a relatively small dataset collected from each occupant. The
approach presented in this paper is a significant step towards personalized environments in office
buildings using real-time feedback from occupants.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Operation of heating and cooling systems in office buildings has
been standardized and automated based on the use of “widely
acceptable” thermal comfort metrics and simple heuristic rules.
However, field studies have shown that individual occupants prefer
different thermal conditions and such metrics could not accurately
predict thermal preference of individual occupants [1e4]. As a
result, typical thermal control systems cannot achieve high levels of
occupant satisfaction. Moreover, because of the conservative con-
trol settings designed for “widely acceptable” conditions, there is a
high probability of energy waste [5,6]. Researchers have recognized
these issues and suggested solutions that incorporate building

occupants in sensing and control frameworks and tune systems
based on personal preferences to achieve customized indoor en-
vironments [7e12]. The method of learning individual occupant
preferences is essential and determines the effectiveness of this
solution, since system control is based on the learning outcomes.

Recent studies have attempted to explore personalized envi-
ronments following different approaches. For example, Murakami
et al. [7] developed an automatic control logic which maintains a
balance between occupants' needs and energy consumption. The
logic was implemented in an office space and resulted in 20% of
cooling energy savings without increasing the percentage of
occupant dissatisfaction. Feldmeier and Paradiso [8] developed a
user-centric distributed control system which learns individual
occupants' thermal preferences using linear discriminant analysis.
The authors tested the system in real offices and reported 24%
savings in HVAC energy consumption (compared to standard HVAC
control) and improved thermal comfort. Erickson and Cerpa [9]
introduced a time-varying variable in the predicted mean vote
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(PMV) model, which corrected the predictions made by the original
model to match occupants' feedback. The authors controlled a
space based on this model and reported that occupants were fully
satisfied with the thermal conditions while 10.1% energy savings
were achieved. Gao and Keshav [10,11] proposed a method to map
the PMV value to occupant feedback using a personalized simple
regression model. The authors developed a controller by inte-
grating the method with clothing level estimation, occupancy
detection and model predictive techniques, and implemented the
controller in an office room, with resulting energy savings up to
60%. Jazizadeh et al. [12] developed an HVAC control framework
that learns occupant comfort profiles using a fuzzy model based on
user feedback. The authors implemented the framework in a real
building and showed that 39% of HVAC energy was reduced while
occupant comfort was improved.

1.1. Current approaches for learning occupant thermal preferences

In previous research, learning is associated with adapting
(estimating) parameters in a model (or a control logic) based on
data collected from an individual occupant, so that the model can
predict the occupant's thermal comfort status, typically expressed
as preference, satisfaction, or sensation under certain conditions
[7e17]. However, developing a reliable model requires data with
sufficient quality and quantity that is difficult to collect from indi-
vidual occupants in real buildings, because occupants should not be
exposed to potentially uncomfortable conditions for a long time. To
address this problem, previous studies have used two strategies,
described below.

The first strategy is based on long-term data collection, and
consequent use of the data to adapt the personalized model. For
example, Daum et al. [14] proposed a learning method based on
multinomial logistic regression and showed that personalized
profiles were needed to predict occupant's thermal sensation
properly. In this study, the authors used data collected from 28
different occupants during a period of three years. The total number
of data points was 6851. The authors also investigated how a per-
sonal comfort profile evolved as new informationwas collected and
used. The results showed that the method required more than 90
data points to develop converged personalized profiles, which
might take more than three months under normal office condi-
tions. However, the long-term data collection often translates into
long times required for developing functionally advanced controls,
depending on the learning outcomes, while data quality is not
guaranteed. For example, if data is collected in a space with
consistent thermal conditions, the data may not represent com-
plete occupant thermal preference patterns, and model parameters
might not always be estimated properly. For instance, the person-
alized profiles in Ref. [14] did not evolve significantly with data
collected in January since the room temperature was kept within a
comfortable range and the occupant answered “comfortable” dur-
ing most of the time in that month.

The second strategy is based on the simplification of the model
structure so that it can be developed with fewer data. Although
studies have been also conducted using complex models
[10,11,13,17], they did not demonstrate if model predictions were
reliable and how potential overfitting problems (due to small-sized
datasets) were addressed. Most of these studies used models hav-
ing only one input variable: air temperature [8,12,14,15]. The
rationale behind this method is the hypothesis that a prediction
made with the air temperature is not inferior to using a complex
model in typical buildings, which was first reported by Humphreys
and Nicol [18]. Even though other environmental factors may
highly co-vary with air temperature or remain constant in typical
buildings, since simplified models do not consider the metabolic

rate and thermal insulation level of clothing, their prediction per-
formance may be limited. To resolve this problem, authors in
Refs. [12,14,15] suggested updating the models continuously by
discarding old data so that the models could reflect adaptive be-
haviors and physiological adaptation. Although these models may
adequately reflect occupant adaptation, that is only possible after
occupants express discomfort. In other words, this approach might
not always be sufficiently predictive, and the models do not take
into account the effect of adaptation before occupant feedback.
Therefore, it is an inherent limitation that these models might not
predict adaptation and, if a space is controlled based on this
approach, occupants may be continuously exposed to uncomfort-
able conditions. Although the approach is straightforward and
practical, with regards to the final goal, it cannot deliver person-
alized indoor environmental conditions for occupant satisfaction,
which might reflect that the approach is self-limited. Moreover, if
other environmental factors (i.e., MRT, air velocity, humidity) do
not highly co-vary with air temperature or do not remain constant,
the simple model may not provide reliable predictions. For
example, in perimeter zones, occupants are affected by both solar
and longwave radiationwhich may vary significantly depending on
sky conditions and solar exposure of the person [19e21]. Also, in
some cases, the HVAC system controls not only the air temperature
but also other parameters in order to create comfortable thermal
environments (e.g., radiant heating/cooling systems or local sys-
tems exploiting the effect of increased air velocity) [22]. Consid-
ering these cases, air temperature-based models may be too simple
to accurately predict occupant thermal preferences.

1.2. Research contributions

This study presents a novel Bayesian modeling approach for
learning individual occupants' thermal preferences, with improved
efficiency and accuracy, even if the model structure is complex and
the amount of data collected from each occupant is relatively
limited. The approach includes (i) developing a general model
structure to explain the thermal preferences for a population of
occupants (Section 2); verification with a synthetic dataset
collected in various office buildings, finding the optimal number of
clusters, and results based on a subset of the large ASHRAE RP-884
database [24] (Section 3); (ii) using the general model to infer the
personalized thermal preference profile of an individual occupant
and prediction results for personalized thermal preference profiles
(Section 4). The prediction performance of the overall method
along with limitations and recommendations for future work is
discussed in Section 5. To enable this approach, we explicitly
encode our main hypothesis: “Different people prefer different
thermal conditions” in the general model. The rationale behind our
modeling choice, i.e. a Bayesian modeling approach, is related to its
inherent advantages: it allows encoding and testing our prior
knowledge and beliefs about the relationships between the
different variables; it can easily account for hidden (unobserved)
variables; and it can seamlessly combine data from heterogeneous
sources as they become available [23]. Fig. 1 shows the overall
process for learning the thermal preference of an individual
occupant.

2. The general model: discovering clusters of occupants with
similar thermal preference characteristics

2.1. Modeling methodology

An important starting point for developing a model is drawing
relationships between variables. Fig. 2 is a simplified version of the
graph representing connections between thermal preference and
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