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The paper describes an invariant-based formulation of a triangular finite element for geometrically non-
linear analysis of shear flexible composite shells subjected to thermal loads. Transverse shear deforma-
tion is taken into account using the first order shear deformation theory. The focus is on the
representation of the strain energy of the shell in terms of invariant quantities which depend on the com-
ponents of the strain tensor and elastic constants of the material. Based on the invariant expression for
the strain energy density, algorithmic relations are derived for computing the stiffness matrix of the shell
finite element. The finite element formulation is used to study stability of equilibrium configurations in
the region of large thermal displacements. A positive definite second variation of the total energy is used
as a sufficient criterion for stability of equilibrium configurations. A series of numerical examples are
given to estimate performance of the finite element in solving nonlinear problems of composite plates
and shells under uniform temperature rise. Solution of some classical problems of laminated plates
and shells shows that there exist equilibrium configurations not previously reported in the literature.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Composite structures made of two or more different materials
combined together offer significant advantages over traditional
structural materials. Owing to their high stiffness-to-weight and
strength-to-weight ratios, composite materials are increasingly
used in aerospace, automotive, shipbuilding industries, etc. There-
fore much effort has been concentrated on the development of
effective methods for predicting deformations and stresses in com-
posite structures subjected to various loading conditions. Excellent
review of the computational models of laminated and sandwich
plates and shells can be found in [1-3]. Most theoretical studies
have dealt with laminated plates and shells under mechanical
loads, whereas less attention has been given to thermal loading
conditions. When subjected to heating, thin-walled structural
members exhibit nonlinear response and can buckle due to com-
pressive stresses that develop under restrained thermal expansion.
Temperature rise is an important loading factor to consider in the
design of high-speed aerospace vehicles subjected to aerodynamic
heating and chemical plants operating at elevated temperature.

Approximate analytical solutions governing thermal response
of composite structures are limited to simple geometries and
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typically obtainable for linear problems only (see, e.g. [4-6]). To
develop more general methods applicable to practical situations
including nonlinear effects, more attention has been focused on
finite-element formulations. Here we list some significant contri-
butions in this area.

Thangaratnam et al. [7,8] used the Semiloof shell element in the
buckling analysis of thin cylindrical and conical laminated shells
subjected to uniform temperature rise. Chen and Chen [9] studied
thermal buckling behavior of composite laminated plates using a
rectangular four-node finite element with 48 degrees of freedom
(DOF). In a recent paper, Ounis et al. [10] developed a four-node
element with 32 DOF which is a combination of linear isoparamet-
ric membrane element and Hermitian element for plate bending
problems. These finite-element formulations are based on the clas-
sical laminated plate theory (CLPT), which is valid only for thin
laminates.

Refined finite-element solutions of the buckling problems of
thermally loaded plates that take into account transverse shear
deformation were obtained by Chandrashekhara [11] and Prabhu
and Dhanaraj [12]. They used nine-node Lagrangian isoparametric
elements based on the first-order shear deformation theory
(FOSDT). Their numerical results indicate that the transverse shear
deformation has a significant effect on the critical temperature of
moderately thick laminates. Using the FOSDT, Dawe and Ge [13]
developed the finite strip method for predicting critical buckling
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temperature of rectangular composite plates. For a rectangular
plate divided into strips of finite width, they used spline functions
to approximate displacement fields along the strips and standard
Lagrange shape functions to approximate those across the strips.
Kabir et al. [14] extended formulation of a three-node element
with full integration scheme to solve thermal buckling problems
of thin and moderately thick composite plates. Shiau et al. [15]
proposed an 18 DOF triangular element for buckling analysis of
symmetrically laminated plates.

The studies mentioned above are restricted to linear buckling
analysis where prebuckling deformations are ignored. However,
this approach leads to significant errors if prebuckling displace-
ments are large and affect stiffness of the structure. In this case,
full geometrically nonlinear analysis should be performed. One
of the earliest studies on large thermal deflections of laminated
panels was carried out by Huang and Tauchert [16], who used a
C%-continuity quadrilateral shell element based on the FOSDT.
Ganapathi and Touratier [17] proposed an eight-node quadrilat-
eral element for postbuckling analysis of laminated plates under-
going moderately large rotations. Using the FOSDT, Barut et al.
[18] developed a co-rotational formulation of a curved triangular
finite element for predicting nonlinear response of laminated
shells under temperature field that varies across the shell surface
and through the thickness. Nonlinear thermoelastic deformations
of closed cylindrical and conical shells of oval cross section were
studied by Patel et al. [19] who used a C°-continuous eight-node
quadrilateral finite element. Based on the results of nonlinear
analysis, they concluded that the linear eigenvalue buckling solu-
tion leads to a significant error in determining critical tempera-
ture. Geometrically nonlinear analysis of shallow and deep
shells under hygrothermal environment was performed by Kundu
et al. [20]. They employed a nine-node isoparametric doubly-
curved element with 45 DOF. Sabik and Kreja [21] discussed the
important issue of determining postcritical deformations that
refer to solution branches crossing the fundamental deformation
path. In a recent paper, Alijani et al. [22] investigated large ther-
mal deformations and snapping behavior of closed cylindrical
shells. The temperature rise versus deflection curves were
obtained by semi-analytical finite-element formulation based on
the FOSDT.

A more accurate analysis of thick composite structures can be
carried out using higher-order shear deformation theories
(HOSDT), zig-zag theories (ZZT) and layerwise theories (LWT).
They could also be represented in a unified form as discussed in
a very large body of literature (see, e.g. [23-26]). Finite-element
formulations based on the HOSDT for thermal buckling problems
of thick plates and shells were proposed in [27-31]. It should be
noted, however, that the finite-element implementation of HOSDT
requires much more unknown variables compared to the CLPT and
FOSDT and leads to dramatic increase in the computational work
especially in the nonlinear analysis of shell structures.

An analysis of the literature on thermally loaded composite
structures shows that most finite-element formulations deal with
the linear buckling problems of laminated plates and shells. Publi-
cations on geometrically nonlinear analysis of composite shells
under temperature rise are sparse and restricted (with rare excep-
tions) to investigation of the primary (or fundamental) deforma-
tion path. To the authors’ knowledge, stability of equilibrium
states of thermally deformed shells has received little attention.
It is well known that, for nonlinear deformable systems, multiple
equilibrium states can occur under the same level of load. From
the practical point of view it is important to distinguish between
stable and unstable equilibrium configurations of shells in order
to infer which configurations and stress distributions can occur
in real practical situations.

The aim of the present study is to develop a computationally
effective finite element for nonlinear stability analysis of compos-
ite thin-walled shells subjected to thermal loads. The core part of
the paper is concerned with invariant-based formulation of a
curved triangular finite element. In [32-34], triangular finite ele-
ments of isotropic shells were developed using an expression for
the strain energy in terms of invariants of the strain tensor. The
idea was to give a simple and concise finite-element formulation
for geometrically nonlinear analysis of two-dimensional struc-
tures. In [35], an attempt was made to formulate a triangular ele-
ment of laminated anisotropic shells using a similar approach. It
was found that the strain energy can be written as a function of
so-called combined invariants which depend not only on the strain
components but also on the stress components. As a result, some
computational effort was needed to perform stress-to-strain con-
version when deriving the element stiffness matrix. In the present
study, the strain energy of anisotropic shell is represented in terms
of combined invariants which depend on the strain components
and elastic properties of the material. This approach allows one
to avoid the additional stress-to-strain conversion in the derivation
of the stiffness matrix of the triangular finite element.

The paper is organized as follows. Section 2 describes coordi-
nate transformations which relate Cartesian components of a sec-
ond rank tensor to its three normal components determined in
three independent directions on the plane. Section 3 contains dis-
cussion of combined invariant of two tensors. Section 4 focuses on
a method for expressing the strain energy density of thermally
loaded anisotropic shell based on the FOSDT in terms of combined
invariants which depend on the components of the strain tensor
and elastic constants of the material. Sections 5 and 6 deal with
the formulation of a shell triangular element based on the invariant
expression for the strain energy. Section 7 describes a solution pro-
cedure for determining equilibrium configurations. Finally, Sec-
tion 8 presents numerical results obtained by the finite element
proposed.

2. Transformation of tensor components

We consider a symmetric second-order tensor u,, (m, n=1, 2)
whose independent components in Cartesian coordinates ¢; and
&; are denoted by uy1, Uy, and uy,. For further derivation, it is con-
venient to write the tensor in the vector form

u={un, up, up}". (2.1)

The tensor can also be represented by its three normal compo-
nents u; (i =1, 2, 3) determined in three independent directions on
the plane. When dealing with triangular domains, it is reasonable
to use three normal components of the tensor related to three
coordinate lines g; parallel to the triangle edges (see Fig. 1).

Following terminology of Argyris (see, e.g. [36-38]), we call
these three normal components the natural components of the
tensor. Thus, in addition to (2.1), any symmetric two-
dimensional tensor u,,, can be represented by the vector contain-
ing three natural components

u={u, u, us}'. (2.2)

Let us give explicit relations between Cartesian and natural
components of a two-dimensional tensor. To this end, we consider
a triangle and denote its vertices by i, j, and k. In what follows, we
employ summation over dummy indices unless otherwise speci-
fied. To describe the material properties, we use Cartesian coordi-
nates ¢; and ¢&,. The natural components determined in the
directions ¢; are given by (no summation over i)

Ui = Umnillmn, (23)
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