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a b s t r a c t

An unstructured mesh Galerkin finite element method is used to obtain estimates of the viscoelastic
moduli of short glass fiber reinforced polymer composites. Periodic Monte Carlo models with 125
identical inclusions are studied. Both spheroidal and spherocylindrical inclusions are considered. The
estimates are compared against predictions of the dilute approximation, Mori-Tanaka (MT) and self-
consistent (SC) models. It is shown that at small fiber fractions, the dilute approximation (Eshelby) model
is exact. However, for the axial stiffness the dilute regime is limited to fiber volume loadings of a few tens
of a percent while typical short glass fiber polymer composites have fiber loadings from 10 to 20 percent.
It is found that in this concentrated regime, both MT and SC models give excellent predictions for all but
the axial stiffness modulus. To assess the feasibility of reliable stiffness and vibration damping design of
composite structures from short fiber reinforced polymers, Monte Carlo models with various fiber orien-
tation distribution (FOD) states are studied. It is shown that the quick Voigt (constant strain) orientation
averaging procedure gives excellent viscoelastic stiffness predictions provided that the finite element
estimates are used for the required moduli of the basis FOD state with fully aligned fibers.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Short glass and carbon fiber reinforced polymers are widely
used in various automotive, construction, marine, building and
other applications [1–4]. Compared to unfilled polymers, such
composites typically have enhanced specific stiffness and strength
so their use allows for the design of lighter engineering structures
with advanced mechanical characteristics. Injection molding and
extrusion compounding are commonly used to convert commodity
thermoplastic polymers such as nylon, polypropylene and poly-
styrene [5,6]. And appealingly, one can also use these traditional
processing routes to manufacture composite structures from short
fiber reinforced polymers [1–4].

Upon processing of short fiber reinforced polymers, spatially
non-uniform fiber orientation distributions (FOD) are commonly
developed across the final composite structure. As a result, the
local elastic stiffness moduli become both position dependent
and anisotropic so for optimum structural design, one would natu-
rally like to employ the elastic moduli predicted as a function of
local FOD. This is commonly achieved in two separate steps
[7–10]. In the first step, one considers a unidirectional FOD with
perfectly aligned fibers and predicts its transversely isotropic

elastic stiffness moduli using either an analytical micromechanics
model or a finite element calculation [8–12]. In the second step,
one evaluates the elastic moduli of all the different multidirec-
tional FOD developed in the molded structure in course of process-
ing using a quick Voigt orientation averaging procedure involving
the second and fourth order fiber orientation tensors and the elas-
tic moduli of the basis unidirectional FOD obtained in the first step
[7,13]. We shall review this two-step procedure below in Sections
3 and 6.

Solid polymers exhibit viscoelastic mechanical responses in
which they store the deformation energy as an elastic solid and
dissipate it as a viscous fluid [5,14–17]. The vibration damping
properties of the manufactured parts can impair both the service
life of the composite structures and also their noise emission
behavior so it would be desirable to extend the traditional design
methods developed for the static elastic responses of short fiber
reinforced composite to their viscoelastic responses.

In steady state harmonic oscillations the tensor of viscoelastic
moduli, the stiffness tensor, is complex, C ¼ C0 þ iC00, where C0

and C00 are the real (storage) and imaginary (loss) parts, respec-
tively. To predict the vibration damping behavior, both C0 and C00

are required. Using the elastic-viscoelastic correspondence princi-
ple, one can convert static elastic solutions of analytical models
to steady state harmonic solutions simply by replacing the con-
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stituents’ static elastic moduli by the corresponding viscoelastic
ones [18]. However, to my best knowledge, for short fiber rein-
forced polymers such viscoelastic predictions have not yet been
validated so it is unclear if they are sufficiently accurate to allow
for reliable design.

In this work, following on from the recent developments in time
domain unstructured mesh finite element micromechanics calcu-
lations [19,20], results are presented, for the first time to my
knowledge, on controlled accuracy estimates of the effective vis-
coelastic stiffness moduli of short fiber composites with both
spheroidal and spherocylindrical inclusions. These estimates are
used to assess the suitability of classical dilute approximation,
Mori-Tanaka and self-consistent models for reliable stiffness and
vibration damping design of advanced composite structures from
short glass fiber reinforced polymer composites.

2. Time domain finite element calculations

2.1. Periodic Monte Carlo snapshots

Starting from a regular simple cubic configuration with 125
non-overlapping identical spheres, we performed Monte Carlo
(MC) runs by moving sequentially the spheres and accepting all
attempted configurations without overlapping spheres and reject-
ing all those with overlapping spheres, see Fig. 1.

Periodic boundary conditions were imposed during the MC
runs. For spherical inclusions, we used cubic boxes with unit edges.
The sphere diameters were set to achieve the desirable sphere vol-
ume fraction tf . MC runs of 107 attempted MC moves per sphere
were conducted. The amplitude of the moves was adjusted to yield
a target acceptance ratio of 0.5. For sphere fractions tf < 0:45, the
box edges were kept unchanged during the MC runs. At larger
sphere fractions, the MC runs were started from a regular simple
cubic array at tf ¼ 0:45 and then, after sufficiently long randomiza-
tion, variable shape MC runs were performed to compress the
models to the target volume fractions [19]. It has already been
shown that such periodic MC models are representative so they
allow one to obtain accurate estimates of the effective viscoelastic
stiffness of random microstructure composites [19–22].

Fig. 2 shows a Monte Carlo model with 125 identical spheroids
aligned along the x-axis.

The equation for a spheroidal particle centered at the coordi-
nate origin is given by

x2

a2
þ y2 þ z2

b2 ¼ 1; ð1Þ

where a is the distance from center to pole along the symmetry axis
x and b is the equatorial radius of the spheroid. The spheroid aspect
ratio is then defined as a ¼ a=b.

The box edges of the MC models were set to have the same
aspect ratio as the inclusions, with equal unit edges along the

y- and z-axis. In this work, we studied spheroidal inclusions with
a from 1 (spheres) to 1000 assuming tf up to 0.55. The desired vol-
ume fraction tf was achieved by assigning a suitable value of the
equatorial radius b. The studied ranges of a and tf included those
characteristic of commonly used industrial chopped glass fiber
reinforced polymer composites, with those having fibers of aspect
ratio from 20 < a < 50 usually termed short fiber composites and
those with a > 100 termed long fiber composites.

2.2. Periodic unstructured meshes

An in-house Delaunay mesh generator was used to create peri-
odic unstructured morphology-adaptive quality meshes of tetrahe-
dral elements for random MC models with spherical inclusions.
The mesh generation procedure was already described elsewhere
[11,19]. The largest MC model studied was the one with 125 inclu-
sions randomly dispersed at tf ¼ 0:55. Its unstructured mesh had

ca. 7 � 105 tetrahedrons [19–23].
To generate a periodic mesh for a random MC model with N

spheroidal inclusions of aspect ratio a dispersed at volume fraction
tf , we used the mesh of an MC model with N spherical inclusions
dispersed at the same tf and applied to all its nodal coordinates
an affine transformation in which the nodal x-coordinates were
scaled by factor a while the y- and z-coordinates were left
unchanged. The same affine transformation was also applied to
the edges of the periodic box. This simple scaling procedure allows
us to achieve accurate microstructural representation of the MC
models with even highly elongated spheroids already with a rela-
tively small number of tetrahedrons, though admittedly highly dis-
torted with their aspect ratios being of the same order of
magnitude as the aspect ratios of the scaled boxes so a rather high,
third order polynomial interpolation in space was then required to
obtain accurate viscoelastic effective stiffness estimates, see Sec-
tion 2.6 below.

2.3. Effective viscoelastic moduli

We assume harmonic oscillations at angular frequency x and
study linear viscoelastic composites consisting of homogeneous
phases with constitutive relations of the form

r ¼ C0ðe� e0Þ þ ðC00=xÞð _e� _e0Þ ð2Þ
where C ¼ C0 þ iC00 is the fourth order tensor of complex viscoelastic
moduli, e and r are instantaneous second order strain and stress
tensors at a given position, respectively, and an overbar denotes a
time derivative [20]. Tensor C is assumed to be time independent
and uniform inside the inclusion and matrix phases. In this work,
we shall use a direct notation, in which the symbols have direct
interpretation as tensors. The initial strain e0 is harmonic:

e0ðtÞ ¼ E0 sinðxtÞ ð3Þ
where t is time and x the angular frequency. The strain amplitude
tensor E0 is uniform and it defines the imposed mode of deforma-
tion [20]. Without loss of generality, in calculations we assumed
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Fig. 1. Generation of periodic random Monte Carlo models with non-overlapping
identical spherical inclusions dispersed at a sphere volume fraction of tf ¼ 0:3.
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Fig. 2. Periodic random MC model with 125 aligned non-overlapping identical
prolate spheroids of aspect ratio a ¼ 5 randomly dispersed at a volume fraction of
tf ¼ 0:3.
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