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a b s t r a c t

An exact electric-elastic analysis of a multilayered two-dimensional decagonal quasicrystal plate sub-
jected to patch loading with simply supported boundary conditions is presented. The pseudo-Stroh for-
malism and propagator matrix method are used to obtain the exact three-dimensional mechanical
behaviors of the plate. By expressing the patch loading in the form of a double Fourier series expansion
an exact closed-form solution with a concise and elegant expression is deduced. Three different kinds of
patch surface loadings are applied to the surface of the plate and the response of the plate is investigated.
Comprehensive numerical results are shown for a sandwich plate subjected to the three patch loadings
with two different stacking sequences. The results show that the stacking sequences, patch loading areas,
and patch loading types have a great influence on the stress, displacement and electric components of the
plate. Also, different coupling constants between the phonon and phason fields will influence the physical
quantities. The useful features observed from numerical results can be used in the design of composite
laminates made of two-dimensional piezoelectric quasicrystals. The numerical results can also serve as
a reference in convergence studies of other numerical methods and for verification of existing or future
plate theories.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Since the first observation of quasicrystals (QCs) by Shechtman
in the early 1980s [1], the structural, electronic, magnetic, thermal
and mechanical properties of the material have been investigated
extensively. Among approximately 200 individual QCs observed
to date, two-dimensional (2D) QCs with fine thermal stability play
an important role in this classification of matter [2]. Based on the
symmetry breaking principle of Landau, the elastic energy theory
of QCs has been formulated [3]. In this elastic theory, there are
two lower frequency excitations: phonon and phason. Phonons
are related to translations of atoms (standard elasticity), while
phasons are related to rearrangements of atomic configurations
along the quasiperiodic direction. The generalized linear elasticity
of QCs established by Ding [4] provides us with a fundamental the-
ory to describe the elastic behavior of QCs. Based on the elasticity
of QCs, expressions of other physical properties of QCs, such as

thermal expansion and piezoelectricity tensors, have been obtained
[5,6].

Attributing to their properties such as corrosion resistivity, low
thermal conductivity, low coefficients of friction, low porosity, high
hardness and high wear resistance, QCs have been increasingly
applied as thin films and coatings [7] and gained considerable
interest in a wide range of study fields, such as dislocations, and
defects in infinite spaces and beams or plates or shells [8–10].
The piezoelectric properties are often considered in the works
[11–16], so as for defects [17,18]. Since plates are of vital impor-
tance in structural design, many analytical solutions for plates
have been obtained especially for laminates [19–21]. However,
phonon-phason coupling, anisotropy, and nonsymmetry intrinsic
in quasicrystalline materials present many obstacles to research-
ers. For 1D QC plates, many works have been conducted to study
the static and dynamic response of the plates, such as static [22]
and free vibration response [23] of a multilayered QC plate, the
dynamic response of a multilayered QC plate subjected to a patch
loading [24]. For 2D QC plates, the complexity of the basic equa-
tions of elasticity increases considerably compared to 1D QC which
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limits most of studies on 2D QCs to the defect problems in infinite
spaces [25,26]. Although the exact solution for 2D QC laminates
has been deduced by Yang [27], no exact closed-form solution for
a multilayered plate subjected to patch loading with piezoelectric-
ity has been reported in the literature.

In this paper, we derive an exact electric-elastic solution of a
multilayered simply-supported plate made of 2D QCs subjected
to patch surface loading. The patch loading is expressed in the form
of a double Fourier series expansion. The powerful pseudo-Stroh
formalisms [28] are extended to 2D piezoelectric QCs to obtain
the general solution for each homogeneous QC layer. The propaga-
tor matrix method [28] is then introduced to treat the correspond-
ing multilayered case. Three different kinds of surface patch
loadings, which include a transverse shear force, a normal force
and an electric potential, are considered in this investigation. Fur-
thermore, a multilayered plate containing both 2D QC layers and
crystal layers is investigated. As numerical illustrations, three
examples of a multilayered plate subjected to different surface
patch loadings are discussed.

2. Basic equations

A 2D QC is a three-dimensional body where its atomic arrange-
ment is quasi-periodic in a plane and periodic along the direction
normal to the plane. Referring to a rectangular Cartesian coordi-
nate system (x1, x2, x3), x1 and x2 is set as the quasi-periodic direc-
tions and x3 as the periodic direction. Then, phason displacements
wm (m = 1, 2) exist in addition to phonon displacements ui (i, j = 1,
2, 3).

The general equations for 2D QCs are given by [6,11]

eij ¼ ð@jui þ @iujÞ=2; wmj ¼ @jwm; Ej ¼ �@j/; ð1Þ

@jrij ¼ 0; @jHmj ¼ 0; @jDj ¼ 0; ð2Þ

where @j ¼ @=@xj and repeating indices imply summation; rij and
Hmj denote the phonon and phason stresses, respectively; emj and
wmj are the phonon and phason displacements, respectively; Dj, Ej

and / represent the electric displacements, electric fields and elec-
tric potential, respectively.

For 2D decagonal QCs with the point group 10m2 in Lame 14,
the linear constitutive equations of 2D QCs with piezoelectricity
can be expressed by the following form [2,3,6]:

r11 ¼ C11e11 þ C12e22 þ C13e33 þ Rðw11 þw22Þ � dð1Þ
31 E3;

r22 ¼ C12e11 þ C11e22 þ C13e33 � Rðw11 þw22Þ � dð1Þ
31 E3;

r33 ¼ C13e11 þ C13e22 þ C33e33 � dð1Þ
33 E3;

r23 ¼ r32 ¼ 2C44e23 � dð1Þ
15 E2;

r31 ¼ r13 ¼ 2C44e13 � dð1Þ
15 E1;

r12 ¼ r21 ¼ 2C66e12 � Rw12 þ Rw21;

H11 ¼ Rðe11 � e22Þ þ K1w11 þ K2w22 � dð2Þ
112E2;

H22 ¼ Rðe11 � e22Þ þ K1w22 þ K2w11 þ dð2Þ
112E2;

H23 ¼ K4w23;

H12 ¼ �2Re12 þ K1w12 � K2w21 � dð2Þ
112E1;

H13 ¼ K4w13;

H21 ¼ 2Re12 � K2w12 þ K1w21 � dð2Þ
112E1;

D1 ¼ 2dð1Þ
15 e13 þ dð2Þ

112ðw12 þw21Þ þ j11E1;

D2 ¼ 2dð1Þ
15 e23 þ dð2Þ

112ðw11 �w22Þ þ j22E2;

D3 ¼ dð1Þ
31 ðe11 þ e22Þ þ dð1Þ

33 e33 þ j33E3;

ð3Þ

where Cij, C44 and C66 are the elastic constants in phonon field; K1,
K2 and K4 represent the elastic constants in phason field; R is the

coupling constant between the phonon and phason fields; dð1Þ
15 , d

ð1Þ
31

and dð1Þ
33 are the piezoelectric constants in phonon field; dð2Þ

112 is the
piezoelectric constant in phason field; j11, j22 and j33 are the per-
mittivity constants.

3. Problem description and general solution for a layered 2D
piezoelectric QC plate

Consider a multilayered 2D piezoelectric decagonal QC plate as
shown in Fig. 1 with horizontal dimensions x � y = Lx � Ly and a
total thickness z = H in a rectangular Cartesian coordinate system
(x, y, z) with its four sides being simply supported. Although the
orientation of the coordinate system can induce different physical
fields [27], in this study the case that the global and local coordi-
nate systems have the relation (x, y, z) = (x1, x2, x3) is considered.
Accordingly, the periodic direction of the 2D QC is the z-direction
or the thickness direction of the plate. Let j denote the j-th layer
of the multilayered plate, hj is defined as the thickness of layer j.
Then, the lower and upper interfaces of layer j are defined as zj
and zj+1 respectively. It follows that, for an N-layered plate with
total thickness H, z1 = 0 and zN+1 = H. Along the interfaces of the
layers, the displacements and z-direction traction stresses are
assumed to be continuous, i.e.

ðuiÞj ¼ ðuiÞjþ1; ðwmÞj ¼ ðwmÞjþ1; /j ¼ /jþ1;

ðrizÞj ¼ ðrizÞjþ1; ðHmzÞj ¼ ðHmzÞjþ1;

ðDzÞj ¼ ðDzÞjþ1:

8><
>: at the interface of layer j and jþ 1:

ð4Þ
The simply supported displacement boundary conditions for

the 2D decagonal piezoelectric plate are as follows:

x ¼ 0 and Lx : uy ¼ uz ¼ wy ¼ / ¼ 0;
y ¼ 0 and Ly : ux ¼ uz ¼ wx ¼ / ¼ 0:

ð5Þ

The solution of the displacement vector of the homogenous 2D
QC piezoelectric plate is assumed to take the following form:

u ¼

ux

uy

uz

wx

wy

/

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

u1

u2

u3

w1

w2

/

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼
X
p;q

esz

a1 cospx sinqy

a2 sinpx cos qy
a3 sinpx sinqy

a4 cospx sinqy

a5 sinpx cos qy
a6 sinpx sinqy

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
; ð6Þ

where

p ¼ mp=Lx; q ¼ np=Ly; ð7Þ

with m and n being two positive integers, and s being the eigen-
value to be determined, and a1, a2, a3, a4, a5 and a6 being the com-
ponents of the corresponding eigenvector to be determined. It can
be seen that the displacement vector satisfies the simply supported
displacement boundary conditions.

Fig. 1. A multilayered 2D QC plate.
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