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a b s t r a c t

This paper proposes a new simple shear deformation theory for isotropic plates. The present theory
involves one unknown and one governing equation as in the classical plate theory, but it is capable of
accurately capturing shear deformation effects. The displacement field of the present theory was based
on a two variable refined plate theory in which the transverse displacement is partitioned into the bend-
ing and shear parts. Based on the equilibrium equations of three-dimensional (3D) elasticity theory, the
relationship between the bending and shear parts was established. Therefore, the number of unknowns of
the present theory was reduced from two to one. Closed-form solutions were presented for both Navier-
and Levy-type plates. Numerical results indicate that the obtained predictions are comparable with those
generated by ABAQUS and available results predicted by 3D elasticity theory, first-order and third-order
shear deformation theories.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Plates and shells are common structural elements in civil engi-
neering structures such as buildings, bridges, tunnels, retaining
walls and other infrastructure. In general, the behaviour of plate
and shell structures can be predicted using either 2D plate theories
or 3D elasticity theory. The classical plate theory (CPT) is the sim-
plest plate theory developed by Love [1] based on the assumptions
proposed by Kirchhoff [2]. However, this theory is only applicable
for thin plates in which the shear deformation effects are negligibly
small. For thick plates, the CPT underestimates deflections and
overestimates buckling loads as well as natural frequencies
because of neglecting these effects.

A large number of shear deformation theories have been pro-
posed to take into account the shear deformation effects. One of
the earliest shear deformation theories was proposed by Reissner
[3] and Mindlin [4]. It should be noted that Mindlin’s theory was
based on an assumption of a linear displacement variation across

the plate thickness. It was therefore referred to as the first-order
shear deformation theory (FSDT). This assumption leads to con-
stant transverse shear strains and transverse shear stresses across
the thickness. A shear correction factor is therefore needed to
account for the discrepancy between the constant shear stresses
and the parabolic distribution of shear stresses in the 3D elasticity
theory. On the other hand, Reissner’s theory was based on the
assumptions of a linear variation of bending stresses and a para-
bolic distribution of transverse shear stresses across the thickness.
These assumptions lead to a displacement field which is not neces-
sarily linear across the thickness, and the shear correction factor is
not required as in the case of Mindlin’s theory. Higher-order shear
deformation theories (HSDTs) were proposed to eliminate the use
of the shear correction factor in the FSDT, and to obtain a better
prediction of the responses of very thick plates. The HSDT is devel-
oped based on a higher-order displacement variation across the
plate thickness using either polynomial functions (e.g. the third-
order shear deformation theory (TSDT) of Reddy [5]) or non-
polynomial functions (e.g. the sinusoidal theory of Touratier [6],
hyperbolic theory of Soldatos [7], exponential theory of Karama
et al. [8] and among others). Several typical shear deformation the-
ories developed from 2010 for composite structures can be found
in Refs. [9–24]. A comprehensive review of plate theories was
reported by Ghugal and Shimpi [25] for isotropic and laminated
plates and Thai and Kim [26] for functionally graded plates.
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Although the existing HSDTs provide a better prediction com-
pared with the CPT, they are much more complicated and compu-
tationally expensive than the CPT because of introducing
additional dependent unknowns into the theory. Therefore, this
paper aims to propose a simple HSDT which contains the same
number of unknowns and governing equations of motion as in
the case of the CPT. The present theory was based on the refined
plate theory (RPT) of Shimpi [27] and 3D elasticity theory. Analyt-
ical solutions of the present theory were also presented. The
obtained predictions were then compared with the available
results predicted by the FSDT, TSDT and 3D elasticity theory as well
as those generated by ABAQUS for validation.

2. Kinematics

The displacement field of the present theory was derived based
on the displacement field of the RPT [27] and the equilibrium equa-
tions of 3D elasticity theory. According to Shimpi [27], the dis-
placement field of the RPT is given as follows:
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where (u;v ;w) are the total displacement along the coordinates
(x; y; z); wb and ws are the bending and shear components of trans-
verse displacementw, respectively; and h is the plate thickness. The
equilibrium equations of 3D elasticity theory in the absence of body
forces are written as:
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where the dot-superscript convention indicates differentiation with
respect to time t; ri are the stress components of the stress tensor;
and q is the density. Substituting Eq. (1) into Eq. (2), the equilibrium
equations are rewritten as:
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The equilibrium equations in Eq. (3) can be rewritten in terms of
stress resultants for a plate under a transversely distributed load
q as shown in Fig. 1 by multiplying the first two equations by z
and then integrating all three equations with respect to z, and
applying several boundary conditions, i.e. the transverse shear
stresses rxz and ryz equal to zero at z ¼ �h=2 and the normal stress
through the thickness rz ¼ 0 at z ¼ �h=2 and rz ¼ �q at z ¼ h=2.
The resulting equations are:
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where the moments M, shear forces Q and mass inertias I are
defined as
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According to Shimpi [27], the moments and shear forces can be
expressed in terms of the dependent unknowns ðwb;wsÞ as
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Fig. 1. Geometry and coordinates of a rectangular plate.
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