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a b s t r a c t

Analytic solutions of test curve are beneficial to analyze mechanical properties and to understand the rea-
son behind mechanical behaviors of materials. Herein, two relationships about both average true strain
and average true stress on necking were obtained. Further, the homogenizing constitutive equation was
obtained according to the linear viscoelastic constitutive equation becoming the foundation of solving
analytic solutions of material behavior. The applicability of analytic solutions in the entire test range
was discussed and improved by experimental results of both uniaxial tension and three-point bending.
Analytic solutions of test curve in this work conform well to the experiments. The moduli and strengths
of polypropylene/calcium carbonate composites were predicted according to this model. This mathemat-
ical model indicates that mechanical behavior of linear viscoelastic material was the outcome of compe-
tition between stress-increasing of extension and stress-decreasing of relaxation. It is hoped that the
empirical formulae of two routine test curves can bring convenience for an analytical study of mechanical
behavior of linear viscoelastic materials.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Polymeric materials are typical viscoelastic materials. In
particular, the particle-reinforced composites are macroscopically
isotropic and simple structure, which are linear viscoelastic
materials characterized in terms of the integral representation of
the Boltzmann superposition principle as well as the differential
representation based on the generalized Maxwell or Kelvin model.
Two kinds of constitutive equations are equivalent. The linear
viscoelastic constitutive equation of tridimensional anisotropy is
also developed to characterize different components based on
the correspondence principle to the theory of elasticity [1].
Furthermore, the fractional viscoelastic constitutive equation is
employed [2–5], which fewer parameters are required to represent
material viscoelastic behavior than traditional integer-order
models [4]. Mechanical behaviors of materials are understood by
the macromechanics theory that has a set of complete equations
[1,6]. Accordingly, the mechanical problems of different materials
are discussed in detail by macromechanics theory, so does
viscoelastic theory, for instance, dynamic problems [7–10], aniso-
tropic problems [11–14] and non-linear problems [5,12,15–17].

Meanwhile, mathematical operations are usually difficult due to
the complex boundary conditions or constructions in engineering,
but some powerful numerical methods are developed to simulate
the mechanical behaviors of materials under different situations,
such as the finite difference method [18–21] or the finite element
(FE) method [5,9,22–27]. Most engineering problems have been
solved.

The most common ways of mechanical performances test of
materials, the uniaxial tension and three-point bending, are a test-
ing standard to obtain the material constants with stationary
boundary conditions. If there are some analytical solutions of
mechanical behaviors of material, it will be beneficial to execute
test in detail. This is meaningful for analyzing what the role of
parameters is understood based on various functional relations
rather than numerical calculations.

In this paper, two relationships on necking were obtained from
viscoelastic theory, which are the average true strain hexðtÞi and
average true stress hrxðtÞi related to the nominal strain e0 and
nominal stress r0, respectively. Further, the homogenizing consti-
tutive equation between hexðtÞi and hrxðtÞi was obtained and
became the foundation of solving geometrically nonlinear mechan-
ical behavior question. The analytic solutions of test curve both
uniaxial tension and three-point bending were solved by the differ-
ential equations. And then the applicability of analytic solutions
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was discussed emphatically via experimental results. The model
was corrected by experiments and empirical formulae were built
in two routine test to suit large deformed flexible polymeric mate-
rials. The moduli and strengths of polypropylene/calcium carbon-
ate composites were predicted according to this model. The
impact of different test rates to materials performance was dis-
cussed, which was convenient to convert among different test con-
ditions. And the changing tendency of mechanical behavior in the
entire test range influenced by parameters was shown. The estab-
lishment of the model will be beneficial to quantitative research
the relationship among a series of ingredients of linear composites,
such as guide formulation design of linear composites when the
relationships among model parameters and the dosage of a series
of raw material was known.

2. The homogenizing constitutive equation on necking

2.1. The definition of average true strain

Viscoelastic materials are mostly high ductile materials, which
are produced large deformation when it suffers the sustained
stress. The large deformation is characterized by geometric equa-
tion. Corresponding to the condition of uniaxial tension (Detailed
process are shown in the Appendix A), the elongation Dl of a spec-
imen is equal to

Dl ¼
Z Dl

0
du ¼

Z l0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2exðx; y; z; tÞ þ 1� f 2ðx; y; z; tÞ

q
� 1

� �
dx ð1Þ

where f 2 ¼ ð@v=@xÞ2 þ ð@w=@xÞ2, ex is the true strain. There is
v ¼ w ¼ 0 and exðx; y; z; tÞ ¼ exðtÞ before necking generated. Hence
the Eq. (1) reduces as

exðtÞ ¼ e0ðtÞ þ 1
2
e20ðtÞ

where e0ðtÞ ¼ Dl=l0 is the nominal strain.
As is shown in part A of Fig. 1, however, v ;w– 0 and ex is

related to the coordinates in the place where necking occur.
(Fig. 1 is the finite element numerical simulation) There is also a
formula resemblance to the relation before necking generated,
which was proven in Appendix A.

hexðtÞi ¼ e0ðtÞ þ 1
2
e20ðtÞ

where hexðtÞi is called average true strain and hexðtÞi 2 ½emin; emax�.
emax is true strain of the smallest columnar shape in the specimen
and emin is the biggest. Hence exðtÞ ¼ eminðtÞ ¼ hexðtÞi ¼ emaxðtÞ when
there is nonexistent necking.

2.2. The definition of average true strain

The volume variation ratio g is changing with the process of
stretching as a function of the nominal strain

V0

V
¼ gðe0Þ ð2Þ

Hence, the true stress is obtained based on Eq. (2) when the
condition is uniaxial tension before necking generated

rxðtÞ ¼ F
A
¼ Fðl0 þ DlÞgðe0Þ

A0l0
¼ r0ð1þ e0Þgðe0Þ

where A0, l0 are initial size of cross-sectional area and gauge length
respectively. r0 ¼ F=A0 is the nominal stress.

After necking, there is also a formula resemblance to the rela-
tion before necking, which was proven in Appendix B.

hrxðtÞi ¼ r0ð1þ e0Þgðe0Þ
where hrxðtÞi is called average true stress and hrxðtÞi 2 ½rmin;rmax�.
rmax is the stress of the smallest columnar shape in the specimen
and rmin is the biggest. Hence rxðtÞ ¼ rminðtÞ ¼ hrxðtÞi ¼ rmaxðtÞ
when there is nonexistent necking.

Some detailed investigations [28,29] that is volume variation
process of materials during tensile are carried out. Assuming that
the function gðe0Þ is enough to form the Taylor’s series, the higher
order in Oðe20Þ can be omitted if the volume changed is not obvious
in the finite tensile range. We say the linear variation,
gðe0Þ ¼ 1þ ae0. Therefore

hrxi ¼ r0ð1þ e0Þð1þ ae0Þ

2.3. The constitutive equation related to the average true strain and
average true stress

The constitutive equation of linear viscoelastic materials does
relate to exðtÞ and rxðtÞ rather than hexðtÞi and hrxðtÞi. In this paper,
the homogenizing constitutive equation on necking was proven
according to the definition of the average true strain and average
true stress based on the linear viscoelastic constitutive equation
in Appendix C

hrxðtÞi þ
Xm
i¼1

pi
di

dti
hrxðtÞi ¼

Xn
i¼0

qi
di

dti
hexðtÞi

3. A uniaxial tension model and three-point bending model

3.1. The relationship between the nominal stress and nominal strain

It was expedient to consider the standard linear solid constitu-
tive equation (h _exi denotes dhexi=dt)

hrxi þ p1h _rxi ¼ q0hexi þ q1h _exi ð3Þ
that included first-order derivative and only one relaxation time but
a satisfactory conclusion was still given out, which was illustrated
by the experiments in this paper.

For uniaxial tension, e0ðtÞ ¼ _e0t. _e0 is the strain rate of extension,
_e0 ¼ v0=l0. According to Section 2.1, it is easy to obtain

hexi ¼ _e0t þ 1
2
_e02t2; h _exi ¼ _e0 þ _e02t ð4Þ

Substituting Eq. (4) into the (3) and solving it (Details of solving
process are shown in the Appendix D), we get

hrxi ¼ At 1� exp � e0
Bt

� �� �
þ Cte20 þ Dte0

where At ¼ ð1� p1 _e0Þðq1 � p1q0Þ _e0; Bt ¼ p1 _e0;Ct ¼ q0=2;
Dt ¼ 2Ct þ At=ð1� BtÞ: ð5ÞFig. 1. The varying stress in the necking A otherwise well-distributed stress

respectively (Draw in ABAQUS 6.14-2).
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