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The nonlinear flexural response of single-layer graphene sheets (SLGSs) resting on elastic matrix is stud-
ied using an atomistic-based second gradient continuum model. The higher-order Cauchy-Born rule is
used to link the interatomic potential to the strain energy induced in the continuum without any param-
eter fitting. The graphene is modeled by a hyperelastic membrane whose elastic potential energy is exclu-
sively written in terms of the interatomic potential. This results in a constitutive model independent of
any additional phenomenological input and thickness. Moreover, through this linkage, both the material
and geometrical nonlinearities are exactly reflected in the constitutive model. To solve the continuum
boundary value problem, the differential quadrature (DQ) approach is employed in the context of a vari-
ational formulation, and the discretized weak form of the equilibrium equation is obtained. The static
response of SLGSs under a uniformly distributed load is evaluated. It is found that the present multiscale
model can reproduce the results of other coupled atomistic-continuum and full atomistic approaches
with a small number of discrete points. Also, the effect of the second-order deformation gradient is found

Keywords:

Atomistic-continuum multiscale modeling
Higher-order Cauchy-Born rule

Graphene sheet

Nonlinear bending

Differential quadrature

to be significant on the bending deflection of SLGS specifically on the one with high flexural stiffness.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, since performing experiment at the nanoscale is
with difficulties and restricted to certain mechanisms only, devel-
opment of proper theoretical models for describing the properties
and behavior of nanostructures has been a subject of primary
interest among the research workers. These models can be roughly
grouped into three categories namely atomistic simulations, con-
tinuum mechanics and multiscale methods. Atomistic simulations
such as molecular statics and molecular dynamics (MD)
approaches that accurately trace the position of atoms as well as
quantum mechanics approaches are viewed as exact methods in
capturing the physical behavior of nanomaterials. However, when
the atomic system is large in size, in the case of practical applica-
tions, these approaches reach their limits in terms of computa-
tional requirement [1,2]. On the other hand, the classical
continuum mechanics is not able to capture the discreet nature
of the material and consequently, the local events at the length
scale of atoms are ignored [3]. Thus, the accuracy of the structural
mechanics models will be limited.
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In general, as the dimensions of a structure are reduced to a
very small scale (e.g., micro/nanoscale), the size effects become
pivotal. The modified (non-classical) continuum theories such as
nonlocal elasticity theory [4,5], couple stress theory [6-8] and
strain gradient theory [9-11] take the small scale effects into
account by introducing additional scale parameters in the constitu-
tive relationship. Of these, as proved in the works of Mindlin, Koi-
ter and Toupin [6-8,12,13], nth gradient theories are reasonably
consistent formal frameworks, and since then, they are widely
adopted to the study of the mechanical behavior of microstruc-
tured materials (see, e.g., the works on microbars [14-16],
microbeams [17-20] and microplates [21-26]).

Discrete mechanical systems can display very outstanding
properties and behaviors. Some of them in which the interaction
law involves first- and second-order Lagrangian neighbours may
show typical second gradient influences [27,28]. A typical example
of a structure whose elasticity appears directly at second order
when it is viewed as a continuum is a pantographic lattice [29].
This structure includes two families of beams interconnected by
elastic pivots and can be considered for designing the microstruc-
ture of metamaterials being highly tough in extension. One alter-
native to model these structures is micro-model based on Cauchy
first gradient continuum theories. However, the computational
efforts for such a modeling (similar to the full atomistic modeling
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of nanostructures) considerably increase when more complex
mechanical systems are under study. Hence, some researchers
have turned their attention toward development of higher gradient
reduced-order models (i.e., macro-models) capturing the features
induced by the microstructure at a scale sufficiently large
[28,30-35]. Also, Hencky-type discrete models are effective in
modeling of complex structures [36]. The numerical results from
Hencky-type discrete model for pantographic structures presented
in Ref. [36] showed that Hencky-type converges to second gradient
model. The pioneer in this point of view (building a homogenized
model of microsystems) is of course Piola [37] who postulated a
deformation energy of continuum consisting of second and possi-
bly higher gradients of deformation. These models employed
homogenization procedures (e.g., Piola’s heuristic homogenization
method leading to an effective continuum) to calculate deforma-
tion energy considering second gradient of displacement. In Piola’s
method, macro-constitutive relations are determined in terms of
the micro properties of the mechanical system of interest. In Refs.
[30,35,38], it is specifically shown that the macroscopic behavior of
some microstructures cannot be described by first gradient models
and the homogenized model must be a second gradient contin-
uum. At this point, it should be remarked that the first gradient
classical Cauchy theories need to be modified by including addi-
tional intrinsic parameters and internal length scales [39]. In other
words, classical homogenization of the structures with a discrete
topology into an equivalent Cauchy continuum may not provide
a correct prediction of the mechanical response at sufficiently
small scale levels or when specific loading conditions are imposed.
Concerning the macro-models based on the higher gradient con-
tinua which can be introduced for pantographic structures, one
consideration needed is that these models involve more material
parameters in comparison with the classical Cauchy medium. An
identification procedure (using ‘ad hoc’ tools) is necessary to deter-
mine them. In detail, test simulations using the micro-model and
macro-model under the same condition can be performed and
deformation at some points and overall stored energy are com-
pared [34].

Another kind of discrete systems possessing the unusual and
highly outstanding properties is graphene. Since Novoselov and
his coworkers [40] found a way to isolate individual graphene
planes from graphite, many researchers have concentrated on the
properties, synthesis and potential applications of graphene. This
nanostructure holds great promise for various innovative engineer-
ing applications such as molecular electronic systems, nano/micro-
electro-mechanical systems (NEMS/MEMS), nanocomposites and
other nanodevices [41-46]. Also, many carbon-based nanostruc-
tures are constructed by deforming graphene sheets (GSs) [47].
Due to several applications of graphene and graphene-based
nanosystems in nanotechnology, understanding the mechanical
behavior of graphene sheets is of great importance.

In most conditions of nano environments, nanodevices includ-
ing graphene sheets may encounter large displacements [48]. Thus,
for the proper design of NEMS/MEMS components, the flexural
response of the nanoscale plates of graphene subjected to trans-
verse load is of much significance. According to the modified con-
tinuum mechanics models, bending behavior of the GSs was
analyzed by a number of researchers [48-54]. The nonlinear bend-
ing behavior of circular SLGSs subjected to central concentrated
load has been studied using continuum plate models and molecu-
lar mechanics simulation [49-51]. In these studies, the accuracy of
the Kirchhoff plate theory in prediction of the static response of a
circular graphene sheet was evaluated through selecting different
material properties for the plate models. Sun et al. [52] analyzed
the bending of nanoscale structures based on the strain gradient
elasticity and found a significant difference between the results
of the atomistic simulation and the continuum model. The MD

simulations for the nonlinear bending response analysis of rectan-
gular graphene sheets in thermal environments were performed
and fitted with the results obtained by nonlocal continuum Kirch-
hoff plate models to estimate a proper value of nonlocal scale
parameter [53]. Considering the van der Waals interactions and
using the nonlocal classical plate theory, Xu et al. [54] investigated
the nonlinear bending behavior of a bi-layered rectangular gra-
phene sheet under a uniformly distributed load in thermal envi-
ronments. Based on the nonlocal elasticity theory, Yan and his
coworkers [55] presented exact solutions accounting for the small
scale effects for the bending deflection of nanoscale beams and
plates.

Bending behavior of micro/nanostructures embedded in an
elastic medium (polymer matrix) is also addressed by some
researchers. The polymer matrix is mostly described by the Win-
kler-Pasternak (two-parametric) elastic foundation utilized in
many applications of engineering structures [56-58]. In this
respect, based on the nonlocal classical plate and the nonlinear
von Karman type strain-displacement relations, Shen [59] carried
out the postbuckling, nonlinear bending and vibration analyses of
simply-supported orthotropic stiff thin film in an elastic medium.
Using the modified couple stress theory and Navier's method,
Akgoz and Civalek [22] presented analytical solutions for bending,
buckling and vibration of microscale plated embedded in an elastic
medium. The elastic medium was modeled as the Winkler elastic
foundation. They [20] also employed the same solution approach
and foundation model to treat the bending behavior of embedded
functionally graded microbeams based on the strain gradient elas-
ticity theory. Golmakani and Rezatalab [48] adopted the first-order
shear deformation (FSD) and nonlocal elasticity theories to
describe the nonlinear bending behavior of the orthotropic single
layer graphene sheet resting on an elastic matrix. They used differ-
ential quadrature approach to solve the boundary value problem.
Sobhy [60] presented an analytical solution to study the influences
of temperature and elastic foundation on transverse deflection and
vibration frequencies of SLGSs with different boundary conditions
by means of sinusoidal shear deformation and nonlocal elasticity
theories. Dastjerdi and Jabbarzadeh [61] considered the small scale
and the shear deformation effects in the nonlinear flexural
response analysis of a bilayer orthotropic GS resting on elastic
foundation by incorporating the first-order shear deformation the-
ory (FSDT) into the Eringen’s nonlocal elasticity theory. More
recently, large deflection behavior of embedded orthotropic SLGS
under thermal and mechanical loads was investigated by Gol-
makani and Sadraee Far [62] using the first-order shear deforma-
tion theory in conjunction with the nonlocal elasticity theory. In
addition to the static analyses, the vibration characteristics of
nano/micro-sized structures were investigated using the non-
classical continuum theories [15,18,19,21-25,47,59,60,63-68].
For example, Akgoz and Civalek [63] obtained an analytical solu-
tion for free vibration of simply-supported SLGS resting on an elas-
tic matrix via the Fourier series method based on the modified
couple stress theory. Ansari and his co-workers [64] investigated
the vibrational behavior of embedded multi-layered graphene
sheets under various boundary conditions considering the van
der Waals interactions and the small scale effects through adopting
the nonlocal elasticity. They also presented explicit expressions for
the frequencies of a double-layered GS with all edges simply sup-
ported. A two-variable refined plate theory accounting for small
scale effects was developed by Malekzadeh and Shojaee [65] to
the treatment of the free vibration of nanoplates. An analytical
solution for simply-supported nanoplates and a DQ-based approx-
imate solution for the ones with various edge conditions were pre-
sented. Free vibration analysis of micro-scaled annular sector and
sector graphene resting on an elastic matrix was carried out by
Civalek and Akgoz [66] employing the nonlocal elasticity theory
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