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a b s t r a c t

Nonlinear bending, thermal buckling and post-buckling analysis for functionally graded materials (FGMs)
tubes with two clamped ends by using a refined beam theory are investigated. The theory satisfies the
traction-free boundary conditions on the inner and outer surfaces of the tube and also takes into account
the transverse shear effects without artificially introducing shear correction factors. The material proper-
ties of FGM tubes are assumed to be temperature-dependent and vary in the radial direction. The asymp-
totic solutions of the FGM tubes under nonlinear bending and thermal post-buckling are solved by using a
two-step perturbation method. The analytical solutions of Timoshenko beam and Euler beam are also
presented. Detailed parametric studies are performed to investigate effects of inner-to-outer radius ratio,
volume fraction as well as shear deformation on nonlinear bending, thermal buckling and post-buckling
characteristics of the FGM tubes.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are a new kind of inho-
mogeneous complex materials in which the microstructure, the
composition and properties vary spatially through non-uniform
distribution of reinforcement phase [1]. Due to the advantages of
physical and chemical properties, FGMs has received great atten-
tion among scholars and has applied in many disciplines such as
spaceflight, nuclear reactor, biomedicine, and nuclear industry
[2,3]. As a new generation of composite materials, functionally
graded materials has the unique capability to prevent delamina-
tion, alleviate thermal stress and eliminating stress concentration,
which has more merits than other traditional complex material
[2,3]. It has become a material of choice to be used in new struc-
ture. Many studies for FGM beams subjected to mechanical or ther-
mal loading are available in the literature.

For FGM beams with rectangular cross sections, many scholars
have conducted many studies on bending, buckling and vibration
of FGM beams based on the model of Euler-Bernoulli beam,
Timoshenko beam and higher order shear deformation beam

[4–23]. As expected, the Euler-Bernoulli beam theory can only be
suited for thin and long beams due to the lack of considering the
effects of shear deformation. To account for the effect of transverse
shear normal strain, Timoshenko beam was developed and was
extensively applied to analyze the structural behavior, for
Timoshenko beam model, Librescu and Stein [24] reported that
the post-buckling load-deflection curves are sensitive to the selec-
tion of the shear deformation faction, so the shear correction factor
needs to properly chosen. To mitigate for this limitation, Reddy
[25] developed a simple higher order shear deformation theory,
the advantage of this theory over Timoshenko beam theory is that
the number of independent unknowns remain the same as in
Timoshenko beam theory, but no correction factors are needed.

For linear and nonlinear analysis of beams with circular cross
sections, the key issue is how to conduct a model in the governing
equation. Huang and Li [26–28] developed a new model for beams
with circular cross-section where shear deformation is taken into
consideration, this beam model can satisfy traction-free boundary
condition on the outer surfaces of columns. Based on that, Zhang
and Fu extended [29] the beam model and proposed a refined
higher-order shear deformation theory for tubes, this theory com-
pared to Huang-Li beammodel is that this model can degenerate to
Huang-Li beam model when the inner radius of the tube is equal to
zero. Based on this model, Zhong and Fu [30] discussed thermal
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post-buckling analysis of FGM tubes with two immovable simply
supported ends based on higher-order beam model. This work
was then extended to the cases of nonlinear bending and vibration
of FGM tubes with two immovable simply supported ends by the
same authors [31].

However, previous studies [29–31] only involved the nonlinear
analysis of FGM tubes with simply supported ends, with only a few
literature. In fact, the effect of boundary condition on analysis of
structure is very significant, as indicated by Kadoli et al. [3]. There-
fore, it is worth of investigating further on FGM tubes with differ-
ent boundary conditions. The present paper intends to discuss
nonlinear bending, thermal buckling and post-buckling of FGM
tubes with two clamped ends. The material properties of FGM
tubes are temperature-dependent and vary in the radical direction.
The governing equation are based on Zhang-Fu beam model [29–
31] and von Kármán type nonlinear strain-displacement relation-
ship. The approximate solutions for nonlinear bending and thermal
post-buckling are obtained by a two-step perturbation method
[1,32]. The effects of inner-to-outer radius ratio, volume fraction
index as well as shear deformation on nonlinear bending, thermal
buckling and post-buckling characteristics of the FGM tubes are
investigated.

2. Basic equations

A FGM tube of length L, inner radius Ri and outer radius R0 with
two clamped ends as shown in Fig. 1 is considered.

The tube is exposed to elevated temperature and subjected to
transverse distributed load q. Let x, y and z be a set of coordinates
with the x and y axes located at the corner of the FGM tube, and the
z axes pointing downwards and perpendicular to x axis. The origin
of the coordinate system is chosen at the corner of the tube on the
mid-plane. Let u1, u2 and u3 be the tube displacements parallel to a
right-hand set of axes (x, y, z), respectively. Meanwhile, we also use
polar cylindrical coordinates (x, r, h) and the corresponding dis-
placement vector (u, ur, uh), where r is the distance from the
mid-plane of the FGM tube, and h is the angle down from y axis
to r axis, which have following relations [26–28]:

y ¼ r cos h; z ¼ r sin h; ur ¼ v cos hþw sin h ð1Þ
Assume the FGM tubes are made from a mixture of ceramics

and metals, the effective material properties Pf including Young’s
modulus Ef, shear modulus Gf, Poisson ratio mf and thermal expan-
sion coefficient af vary continuously in the radial direction, which
can be expressed as

Pf ðr; TÞ ¼ ð1� CÞPmðTÞ þ CPcðTÞ; with C ¼ r � Rið Þ= R0 � Rið Þ½ �N
ð2Þ

where N is the volume fraction index which only take positive val-
ues ð0 6 N 6 þ1Þ, Pm and Pc are corresponding temperature-
dependent properties of metal and ceramic, respectively, and may
be expressed as nonlinear function of temperature

Pm ¼ P0 P�1T
�1 þ 1þ P1T þ P2T

2 þ P3T
3

� �
;

Pc ¼ P0 P�1T
�1 þ 1þ P1T þ P2T

2 þ P3T
3

� �
ð3Þ

in which, T = DT + T0. T (in Kelvin) is the temperature distribution
through the tube, DT is the temperature increment from some ref-
erence temperature T0 at which there are no thermal strains. As is
customary, T0 = 300 K. P0, P�1, P1, P2 and P3 are the coefficients of
Kelvin’s temperature and unique to constituent materials. For sim-
plicity, the temperature field T is assumed to be uniform.

Based on the beam model developed by Zhang and Fu [29–31],
the displacement field can be expanded as the following form

u1ðx; y; zÞ ¼ uðxÞ þ f ðy; zÞ dw
dx þ gðy; zÞuðxÞ

u2ðx; y; zÞ ¼ 0
u3ðx; y; zÞ ¼ wðxÞ

ð4Þ

in which

f ðy; zÞ ¼ z R2
0R

2
i r

�2 � r2=3
� �

R2
0 þ R2

i

� ��1

gðy; zÞ ¼ zþ z R2
0R

2
i r

�2 � r2=3
� �

R2
0 þ R2

i

� ��1
ð5Þ

where u(x) is the mid-plane rotation of the normal about the y axis.
It should be mentioned that, if f (y, z) = 0, Eq. (4) is for the case of
Timoshenko beam’s theory, which contain the same dependent
unknowns (u, w, u). If f (y, z) = �z, Eq. (4) is reduced to the case of
Euler-Bernoulli beam’ theory. If by setting the inner radius Ri ¼ 0,
Eq. (4) is for the case of the shear deformation theory for circular
cylindrical beams developed by Huang-Li [26–28].

It is assumed that the present tubes deform within elastic
regime and Hooke’s law is valid. Note that w and u are only a func-
tion of x, f (y, z) is the function of y and z. Considering nonlinear von
Kármán strain-displacement relationships, the normal strain exx
and shear stress strains cxy, cxz, cxr of the FGM tubes associated
with the displacement field given in Eq. (4) are

exx ¼ du1
dx þ 1

2
du3
dx

� �2
¼ eð0Þx þ feð1Þx þ geð2Þx ;

cxy ¼ @f
@y c

ð0Þ
xz ; cxz ¼ 1þ @f

@z

� �
cð0Þxz ; cxr ¼ cxz sin hþ cxy cos h

ð6Þ

in which

eð0Þx ¼ du
dx

þ 1
2

dw
dx

� �2

; eð1Þx ¼ d2w

dx2
; eð2Þx ¼ du

dx
; cð0Þxz ¼ uþ dw

dx

� �
ð7Þ

When the thermal effect is taken into consideration, the consti-
tutive relations of the tubes can be expressed as

rxx ¼ Ef ðr; TÞ exx � aðr; TÞDT½ �; sxr ¼ Gf ðr; TÞcxr
sxy ¼ Gf ðr; TÞcxy ¼ Ef ðr;TÞ

2 1þtf ðr;TÞ½ �
@f
@y c

ð0Þ
xz ;

sxz ¼ Gf ðr; TÞcxz ¼ Ef ðr;TÞ
2 1þtf ðr;TÞ½ � 1þ @f

@z

� �
cð0Þxz

ð8Þ

where Ef(r, T) is Young’s modulus, Gf(r, T) the shear modulus, and
mf(r, T) is Poisson ratio. The stress resultants and couples can be
defined by

Nx ¼
R
A rxxdA ¼ A0eð0Þx � NT

Mx ¼
R
A rxxfdA ¼ A1eð1Þx þ A2eð2Þx �MT

x

Px ¼
R
A rxxgdA ¼ A2eð1Þx þ A3eð2Þx � PT

x

Q ¼ RA sxy @f
@y

h
þsxz 1þ @f

@z

� �i
dA ¼ A4cð0Þxz

ð9Þ
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Fig. 1. Geometry and coordinates of A FGM tube with two clamped ends: (a) main
view, (b) cross section view.
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