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a b s t r a c t

Variable-stiffness panel with curvilinear fibers is a promising structural concept compared to constant-
stiffness designs. However, for the traditional finite element analysis (FEA), there is no guarantee that
the fiber angle is continuous and smooth due to element discretization. In this study, on the basis of
Mindlin plate theory, the buckling behavior of composite variable-stiffness panels is investigated based
on isogeometric analysis (IGA), whose main feature is that the continuity of fiber angle on the whole
panel is guaranteed. In particular, since geometric stiffness matrix has a significant influence on the buck-
ling behavior, it is obtained by performing a static analysis prior to the buckling analysis herein, which
can further improve the prediction accuracy of current methods. Different fiber path functions, ply num-
ber, geometric parameter, as well as various boundary and loading conditions are adopted to verify the
proposed buckling analysis method. Finally, the prediction accuracy, total degree-of-freedom and CPU
time are compared with the traditional FEA, which indicates that the isogeometric buckling analysis
method can provide an adequate accuracy in a more efficient manner.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

With the ever increased demand of lightweight design for aero-
space industries, composite structures have been persistently pop-
ular for several decades. One of the primary advantages of utilizing
composite panels into aerospace structures is the ability to tailor-
ing mechanical property (e.g. stiffness and strength) by designing
the laminate stacking sequence [1,2]. Compared to the constant-
stiffness design, a superior structural performance can be achieved
for variable-stiffness design, in which fiber path within the ply is
curvilinear. Therefore, variable-stiffness design has spatially vary-
ing bending and coupling stiffness, indicating an enhanced design
flexibility, which is beneficial in achieving the in-plane and out-of-
plane stiffness requirements. Setoodeh et al. [3] demonstrated that
a significant improvement of buckling loads can be gained by uti-
lization of variable-stiffness panels. The improvement is attributed
to the redistribution of in-plane loads to relatively stiff regions, and
then resist buckling in critical regions. However, the rational for-
mulation of variable-stiffness design problems is crucial, since
the design efficiency would be significantly reduced with the
increase of variables, more importantly, an inappropriate formula-
tion may result in impractical structures with material discontinu-
ities. In the previous works, three strategies were commonly used,

i.e. patch design, blending design and curvilinear parameterization
[4]. For instance, overlapping patches were used to guarantee the
compatibility of fibers in adjacent regions [5]. Also, blending rules
were proposed to serve as a continuity constraint in adjacent ele-
ments. Liu and Haftka [6] introduced a new measure of continuity
by distinguishing the composition continuity and stacking
sequence continuity, and then a composite wing was designed on
the basis of this continuity constraint. By contrast, curvilinear func-
tions were widely utilized to represent the fiber paths, where a
pre-defined mathematical expression or its interpolation to pre-
scribed key points are the essence. For example, linear variation
fiber orientations were investigated by Gürdal et al. [7], and results
show that the performance gain is significant compared to that of
straight fiber. The linear variation fiber angle has been widely used
in the analysis, design and manufacture of variable-stiffness com-
posite panels [8–10]. In the works by Muc and Ulatowska [11], the
contour lines of cubic functions were employed to describe
the fiber paths. It was found that substantial improvement in the
bending stiffness can be gained by spatially orienting fiber angles
on their optimal directions. Four theoretical fiber path definitions
were compared for conical shells by Blom et al. [12], and also
trigonometric functions were employed to represent the fiber
angles for conical shells. To enhance the design space, the fiber
angles were then represented as cubic Bezier curves by Parnas
et al. [13]. Similarly, nonlinear distribution of fiber angles was
formulated by Lagrangian polynomials [14]. The fiber path was
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treated as a linear combination of pre-defined base fiber paths by
Nagendra et al. [15]. Recently, Niu et al. [16] proposed a new
parameterization method for fiber angle based on the potential
flow theory, and results of tension test indicate that the strength
of curvilinear laminate is improved significantly. To accelerate
the design process of variable-stiffness panels, a reanalysis-based
optimization method was proposed to substitute surrogate mod-
els, and the global optimization capacity is finally improved [17].
With the development of advanced manufacturing techniques for
composite materials, Automated Fiber Placement (AFP) makes it
possible to fabricate laminates consisting of layers with curvilinear
fibers. As another similar concept, curvilinearly stiffened panels are
also regarded as a type of promising configurations [18–20]. Curvi-
linear stiffeners have been demonstrated to be beneficial for cutout
reinforcement of thin-walled panels to improve the strength mar-
gins by Hao et al. [21]. The advantageous loading path and tension
field caused by curvilinear stiffeners were examined in detail by
comparison of the ones of straight stiffeners [21]. Furthermore,
Hao et al. [22] proposed a novel method to determine the division
of near field and far field, and then performed the optimization of
curvilinear stiffeners in the near field. Wang et al. [23] performed
the buckling optimization of curved stiffeners based on a global/
local coupled strategy, and a significant improvement of post-
buckling performance was observed.

In the framework of traditional FEA, there is no guarantee that
the fiber orientation angle is continuous and smooth due to ele-
ment discretization for composite variable-stiffness panels, and
the fibers are discretized at each element and dealt with as straight
fibers, as shown in Fig. 1. To be specific, the fiber angle of ith ele-
ment is defined as the tangential direction of path function using
the coordinates of the center of the element, which means that
each element has straight fibers with a constant fiber volume frac-
tion rather than different orientation angle. Thus, fiber angle needs
to be assigned for each element before FEA is performed, which
would take a lots of CPU time. Moreover, this assumption would
lead to a large prediction error of buckling behavior unless a very
refined mesh size is adopted, which severely increases the compu-
tational burden of both geometry modeling and buckling analysis,
especially for large-scale structures. In this case, IGA is a type of

promising numerical computational method, which shows advan-
tages over the traditional FEA. Therein, the Non-Uniform Rational
B-Splines (NURBS) is employed not only as a geometry discretiza-
tion technology, but also as a tool for analysis [24–27]. In this
framework, geometric design and computational analysis can be
integrated closely, thus the element refinement is simply imple-
mented by re-indexing the parametric space without iteration
with the geometry model, also without introducing geometric
error. Moreover, the high-order continuity of IGA elements
obtained by k-refinement are typically smooth beyond the tradi-
tional C0-continuous finite elements. As a result, IGA is known as
a robust numerical method that can be used to deal with compos-
ite structures, because of the superior characteristics of NURBS
such as smoothness, high-order continuity and reduction of total
degree-of-freedom (DOF) [25–28]. For variable-stiffness panels,
IGA can provide significantly higher accuracy compared with the
one by FEA though only a small number of DOF are required. How-
ever, little related work on variable-stiffness panels using the IGA
can be found in the open literatures until now.

Buckling is the main failure mechanism for thin-walled com-
posite panels [29–40]. In the traditional buckling analysis, geomet-
ric stiffness matrix is usually assumed to be uniformly distributed.
For constant-stiffness designs, this assumption is adequate to sim-
plify the buckling analysis. However, for variable-stiffness designs,
the stress distribution is spatially varying, thus it is crucial to cal-
culate the true geometric stiffness matrix before eigenvalue buck-
ing equation is solved, which is usually neglected in the previous
studies. In this study, Mindlin plate theory is utilized to carry out
the buckling analysis, which is on the basis of first-order shear
deformation theory. Except for this theory, Tounsi et al. [41,42]
developed hyperbolic shear deformation theories without the need
of shear correction factors, and the number of unknowns and gov-
erning equations is reduced to five or three, which have been suc-
cessfully extended to the buckling analysis, bending analysis and
free vibration analysis [43–55].

This paper is organized as follows. In Section 2, an overview of
IGA is briefly presented, and then the framework for isogeometric
buckling analysis with true geometric stiffness is introduced. In
Section 3, variable-stiffness panels with linear variation fiber

Fig. 1. Comparison of FEA and IGA for variable-stiffness panels.
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