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a b s t r a c t

The classical homogenization method has been widely adopted to capture the effective behaviors of
heterogeneous materials. However, when the characteristic length of the microstructure of the heteroge-
neous material is comparable to the size of the structure, the classical homogenization method is math-
ematically no longer valid. In this paper, a new substructure-based homogenization approach is proposed
to predict the mechanical responses of systems with periodic microstructures of comparable sizes. A sub-
structure element is developed to reconstruct the system with periodic microstructure of comparable
size. It is verified that this substructure-based homogenization approach can accurately predict the
mechanical responses of the system. Comparing with the full finite element analysis, the computational
scale is dramatically decreased. After that, a simplified substructure element is developed by using less
surface nodes in the ‘‘full” substructure element. The numerical results show that, with further signifi-
cantly reduced computational cost, the third-order simplified substructure element can provide a good
prediction of the responses of the system with periodic microstructure of comparable size.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the idea of homogenization has been widely
adopted to estimate the effective behaviors of heterogeneous
materials (e.g., composites, porous materials). One theoretical
approach is to use theories of micromechanics to study the repre-
sentative volume element (RVE) models and develop homogenized
constitutive models to predict the effective responses of compos-
ites [1–6]. Another numerical homogenization approach is to use
finite element method (FEM) to simulate the mechanical responses
of the RVE models [7–10]. The RVE models are also widely used in
analysis of system with periodic microstructures [11–13]. In the
classical homogenization procedure, the obtained constitutive
models are usually used to describe the stress-strain relation at
the Gaussian integration points in finite element (FE) analysis of
systems of heterogeneous materials. This implies that the classical
homogenization approach is at the (macroscopic) material point
scale. Therefore, mathematically the RVE size should be sufficiently
smaller than the structure size but sufficiently larger than the char-
acteristic length of the microstructure [14]. For example, Cricri and

Luciano [15] suggested that the RVE models of cellular materials
have at least 10 cells in each direction to get accurate effective
parameters. Hence, the classical homogenization approaches based
on RVE models cannot be adopted when the characteristic length
of the microstructure of the heterogeneous material is comparable
to the size of the structure (e.g., Lstruture=Lmaterial < 10). However, due
to the novel manufacturing technologies such as 3D printing, the
idea of integrated design of materials and structures leads to many
structures with periodic microstructures of comparable sizes. In
this paper, a substructure-based homogenization approach is
developed to simulate the mechanical responses of systems with
periodic microstructures of comparable sizes. In this
substructure-based homogenization approach, the microstructures
of the materials are considered as substructures of the structure
because they are of comparable sizes. Therefore, in the
substructure-based homogenization approach, the homogeniza-
tion is at the structure scale rather than the material point scale.
In the literature, Karpov et al. [16] adopted the substructures to
analyze the static properties of finite repetitive structures, and
some illustrative examples (i.e., truss bridge, clamped grid and
honeycomb structures) are discussed with the substructure
method. Li and Law [17] used substructures to reconstruct the sys-
tem and study the response of a frame under the excitation force
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with wavelet domain method. Mencik [18] investigated the har-
monic force response of one-dimensional periodic structures by
analyzing the substructure with wave finite element method. Bol-
drin et al. [19] explored the dynamic behavior of gradient compos-
ite hexagonal honeycombs with a substructure-based component
mode synthesis (CMS) method. Yu et al. [20] also adopted the
CMS to study the mode shapes of the global structure with
element-by-element model, which is used to update the large-
scale structure. In these papers, the substructure concept is consid-
ered at the structure level, while in our approach, the substructure
concept is also applied to the material level, i.e., the microstructure
of the heterogeneous materials.

In this paper, the substructure element is developed to describe
the microstructure of the heterogeneous materials. The global stiff-
ness matrix of the RVE model is transformed to the elemental stiff-
ness matrix of the substructure element by eliminating the interior
degrees of freedoms (DOFs). Using the substructure elements, the
simulation results obtained are identical to those from full FEM
simulations, but the computational cost is much lower. Comparing
to classical homogenization approaches, the substructure-based
approach is particularly useful when the characteristic length of
the heterogeneous material is comparable to the size of the struc-
ture. Moreover, to reduce the computational scale further, the sim-
plified substructure element is proposed and it is shown that the
third-order simplified substructure element can well predict the
effective behavior of the systems with periodic microstructures
of comparable sizes.

The structure of this paper is as follows: In Section 2, the sub-
structure element is constructed, and the applications of the
substructure-based homogenization approach are illustrated. Then
the simplified substructure element is developed to further
decrease the computational scale and it is applied to the analysis
of the porous beams in Section 3. After that, some conclusion
remarks are given in Section 4.

2. Substructure-based homogenization approach

In this section, the substructure element is developed to
describe the microstructure of the heterogeneous material and
its elemental stiffness matrix is derived using the concept of sub-
structure. Then the substructure-based homogenization approach
is applied to some examples to verify its accuracy and efficiency.

2.1. Stiffness of substructure element

Considering an RVE model of the microstructure of a heteroge-
neous material (an example shown in Fig. 1a), it is meshed and its
mechanical response can be simulated using FEM by the following
equation:

Kd ¼ P; ð1Þ
where K is the system stiffness matrix of the RVE model, d denotes
the vector of nodal displacements, and P represents the vector of
nodal forces. The nodes are further classified as the surface nodes
and the interior nodes. Then Eq. (1) can be alternatively written as

Kss Ksi

Kis Kii

� �
ds

di

� �
¼ Ps

Pi

� �
; ð2Þ

where subscript s and i denote the two kinds of nodes respectively.
Hence, the response of the RVE can be approximated by the surface
nodes only as

K�
ssds ¼ P�

s ð3Þ
where the elemental stiffness matrix of the substructure element is
defined as

K�
ss ¼ Kss � KsiK

�1
ii Kis; ð4Þ

and the vector of equivalent surface nodal forces is computed
as

P�
s ¼ Ps � KsiK

�1
ii Pi: ð5Þ

Therefore, in comparison to the original RVE model, the dimen-
sion of the elemental stiffness matrix of the substructure element
is reduced significantly due to the elimination of the DOFs of the
interior nodes, which leads to much smaller computational scale.
For instance, the RVE model of a unit square with a circular hole
shown in Fig. 1(a) has 567 nodes and 987 triangular elements,
which can be utilized in FEM to simulate its mechanical responses.
The corresponding substructure element contains only 100 (sur-
face) nodes (Fig. 1b), in which each edge is divided to 25 segments
by 24 nodes on the edge. The number of elements also is reduced
from 987 triangular elements to 1 single substructure element. It
will be shown next that the substructure element can achieve
exactly the same solution as the full FEM simulation of the detailed
RVE model.

Fig. 1. The schematic diagrams of an RVE model (a) and the corresponding
substructure element (b).
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