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a b s t r a c t

The fact that complex simulation can be carried out at present days allows to go further to answer new
questions in the compressive failure of polymer composites. A thorough understanding of fiber kinking is
essential for the prediction of stiffness and strength of fiber reinforced composites. The goal of this paper
is to give a deep understanding of some topics which are still unclear in the micro modeling of fiber kink-
ing. Such are the kinking mechanism and the difference in the kinking mechanics between global and
local imperfections, the determination of kink band angle and consideration of statistical distributions
of fiber waviness.
3D micro models are presented in Part-I in order to simulate the compressive failure in continuous fiber

reinforced composites under pure compression considering the effect of fiber kinking. It is shown that the
kinking mechanism is changed by changing the type of fiber waviness, the angle of the kink band is
depend on the tensile strength of the fibers and the kink bands in a model with statistical distributions
of fiber waviness are located at the edges of the specimen.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fiber kinking is the decisive mechanism leading to compressive
failure of fiber reinforced composites. It is responsible for the rela-
tively low compressive strength of unidirectional laminates com-
pared to the tensile strength, the longitudinal compressive
strength of IM7/8551-7, for instance, is about 62% of its longitudi-
nal tensile strength, see Kaddour and Hinton [15]. In early analyt-
ical studies of fiber kinking, an elastic buckling of aligned fibers has
been assumed by Rosen [25]. He presented a model for micro buck-
ling of glass fiber-epoxy laminates under compression considering
the fibers as plates supported by an elastic matrix. However, it is
now widely acknowledged that initial fiber misalignments accom-
panied by matrix nonlinearities are responsible for the initiation of
kink bands. This observation was published for the first time by
Argon [1]. He reported that initial misalignment produces an inter-
laminar shear stress. When this stress reaches the yield limit, a
sliding and rotation process will begin for the fibers in this area.
Argon’s model considered the initial misalignment angle, but did
not take into account the increased fiber rotation angle during
the kinking process.

Budiansky [2] and Budiansky and Fleck [3,4] showed through
their analytical and experimental evidence that long fiber poly-
meric composites fail under compression by plastic kinking. Their
compressive strength is sensitive to the misalignment of the fibers.
They showed that the kinking stress for misaligned fibers is about
25% of the elastic microbuckling stress of perfectly aligned fibers.

The analytical model based on the kinking theory of Budiansky
and Fleck [3] was applied by Guimard et al. [9] and Feld et al. [6].
Guimard et al. combined the model with the statistical distribution
of fiber misalignment from Paluch [20] to obtain an accurate distri-
bution of peak loads. The fibers were assumed to be inextensible in
tension/compression and their bending behavior is modeled by
Euler–Bernoulli beams. The matrix constitutive law is based on
Prandtl–Reuss elastoplastic law with positive isotropic hardening.
Feld et al. [6] consider a shear pre-stress and a damageable behav-
ior of the matrix. Their micro model was a one-dimensional repre-
sentative volume element using the finite element formulation, as
described by Guimard.

In addition to analytical models, numerical simulations of the
fiber kinking process were performed as well. Kyriakides et al.
[17] and Kyriakides and Ru [16] used a two-dimensional model
based on elastic fibers and inelastic matrix behavior. The matrix
was modeled as an elastic–plastic solid with J2 plasticity, the car-
bon fibers are represented using an anisotropic nonlinear elasticity
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law. Furthermore, two kinds of imperfections were imposed: a uni-
form sinusoidal waviness and a sinusoidal waviness with variable
amplitude. In Vogler and Kyriakides [29], two- and three-
dimensional models regarding local and global imperfections were
used to study the initiation and growth of kink bands in fiber com-
posites. Fiber waviness as a local imperfection is added at the free
edge in order to initiate the kink band. The results showed insen-
sitivity of the characteristics of the kink band with respect to
amplitude and wavelength. In order to determine the effect of
the fiber diameter on the compressive strength a 3D model was
presented by Yerramalli and Waas [34]. The numerical results of
the 3D micro model demonstrated an increase of the compressive
strength with an increase of the fiber diameter. These results were
also observed in the experiments from Yerramalli and Waas [33]
and Yerramalli [32].

Numerous models have been suggested in literature in order to
explain the phenomenon of fiber kinking and to determine the
compressive strength of fiber reinforced composites. Despite all
of this effort, there are still unclear topics which will be addressed
in this paper: the influence of the imperfection type on the result-
ing kinking mechanism, the determination of the kink band angle
and how to consider the statistical distributions of fiber waviness
in the micro model. Different types of fiber waviness were investi-
gated first by Vogler and Kyriakides [29]. They introduced a local
imperfection to initiate a kink band in the numerical simulation.
In this study, it is shown that two different kinking mechanisms
exist: kink bands initiated by local fiber waviness and kink bands
initiated by global fiber waviness. It is revealed that the kinking
mechanism depends on the type of imperfection. Moreover, the
effect of different strength values on the kink band angle is exam-
ined and it is shown that the kink band angle depends on the ten-
sile strength of the fiber. In the last section of this work a 3D micro
model is created considering the statistical distributions of fiber
waviness. The amplitude, half wavelength, out of plane misalign-
ment angle and the equivalent fiber diameter are taken from four
statistical distributions, according to Paluch [20], to built the 3D
finite element model and to investigate the kinking behaviour of
this model.

2. Micro modelling

Two finite element analyses were performed for two types of
carbon fiber reinforced polymer: IM7/8551-7 and AS4/8551-7.
Fig. 1 shows the 3D micro model used in the analysis. The diameter
of the cylindrical fibers were d ¼ 5:2 lm for IM7 carbon fiber and
d ¼ 7:1 lm for AS4 carbon fiber. A fiber volume fraction of
m ¼ 57% is considered for both models. The mechanical properties
of the selected materials are listed in Tables 1 and 2. A change in

the compressive strength was observed by changing the size of
the micro models, see Prabhakar and Waas [22]. To avoid this
change, the sizes of the two calculated computational models are
selected in a systematic manner by keeping a fixed aspect ratio
between the dimensions of the models, see Table 3.

8-node brick elements were used for the finite element dis-
cretization. The commercial implicit Finite Element Analysis
(FEA) software Abaqus/Standard, see Hibbit et al. [12], was
employed and the isotropic elastic–plastic model for the epoxy
resin and the orthotropic model for the fibers were implemented
in an user defined subroutine (UMAT). Because of the expected
sharp snap-back of the stress–strain response, the arc-length con-
trol method is used to determine the unstable path of this curve. A
schematic of the boundary conditions is shown in Fig. 2. A com-
pressive load is applied to the top face (T) of the model parallel
to the fiber, while the boundary conditions for the micro mechan-
ical model are applied at nodal positions, so that the bottom face
(B) is fixed in x-direction and the left corner is fixed in y-direction.

2.1. Elastic–plastic material model for epoxy resin

The plastic behavior of epoxy resin exhibits a prominent pres-
sure dependency, which results in a completely different yielding
behavior in tension, shear and compression. Under uniaxial and
biaxial tension, epoxy resin is quite brittle, however, a pronounced
ductile behavior can be observed under shear and uniaxial com-
pression, Schlimmer and Troost [26], Rolfes et al. [24] and Vogler
[27]. Not only the plastic behavior, but also failure and material
softening depend on triaxiality. To account for these effects, a phe-
nomenological material model proposed by Ernst et al. [5] is used,
which is based on models proposed by Raghava et al. [23], Schlim-
mer and Troost [26], Fiedler et al. [7] and Vogler et al. [28].

Due to the different yielding behavior under uniaxial tension,
uniaxial compression and simple shear, a plasticity model with a

Fig. 1. Micro model consisting of cylindrical fiber and matrix.

Table 1
Mechanical properties of IM7 and AS4 carbon fibers as used in the numerical models,
from Kaddour and Hinton [15] and Hinton et al. [13].

IM7 carbon fiber AS4 carbon fiber

d (lm) 5.2 7.1
E1 (GPa) 276 225
E2 (GPa) 19 15
G12 (GPa) 27 15
G23 (GPa) 7 7
t12 0.2 0.2
t13 0.2 0.2

ef;t11 (%) 1.87 1.49

rf;t
11 (MPa) 5180 3350
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