Trigonometric-series solution for analysis of laminated composite beams

Trung-Kien Nguyen ${ }^{\text {a,* }}$, Ngoc-Duong Nguyen ${ }^{\text {a }}$, Thuc P. Vo ${ }^{\text {b,d }}$, Huu-Tai Thai ${ }^{\text {c }}$
${ }^{\text {a }}$ Faculty of Civil Engineering, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan Street, Thu Duc District, Ho Chi Minh City, Viet Nam
${ }^{\mathrm{b}}$ Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
${ }^{\text {c }}$ School of Engineering and Mathematical Sciences, La Trobe University, Bundoora, VIC 3086, Australia
${ }^{\text {d }}$ Duy Tan University, Da Nang, Vietnam

A R T I C L E I N F O

Article history:

Received 11 September 2016
Revised 8 October 2016
Accepted 15 October 2016
Available online 18 October 2016

Keywords:

Trigonometric-series solution
Laminated composite beams
Static
Buckling
Vibration

Abstract

A new analytical solution based on a higher-order beam theory for static, buckling and vibration of laminated composite beams is proposed in this paper. The governing equations of motion are derived from Lagrange's equations. An analytical solution based on trigonometric series, which satisfies various boundary conditions, is developed to solve the problem. Numerical results are obtained to compare with previous studies and to investigate the effects of length-to-depth ratio, fibre angles and material anisotropy on the deflections, stresses, natural frequencies and critical buckling loads of composite beams with various configurations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Composite laminated beams have been increasingly used in the various engineering fields for example in constructions, spacecraft, aircraft, mechanical engineering, etc. In order to predict accurately their structural responses, various beam theories with different approaches have been developed. These beam theories can be divided into three following categories: classical beam theory (CBT), first-order beam theory (FBT) and higher-order theory (HBT). A general review and assessment of these theories for composite beams can be found in [1-3]. It should be noted that CBT is only suitable for thin beams due to neglecting shear effect. FBT overcomes this adverse by taking into account this effect. However practically an appropriate shear correction is required. By using higher-order variation of axial displacement, HBT predicts more accurate than CBT and FBT, and importantly no shear correction factor is necessary. Therefore, this theory has been increasingly applied in predicting responses of composite beams.

For numerical methods, finite element method has been widely used to analyze composite beams [4-17]. For analytical approach, Navier solution is the simplest one, which is only applicable for simply supported boundary conditions [18-20]. In order to deal with arbitrary boundary conditions, many researchers developed different methods. Ritz-type method is commonly used [21-24]. Khdeir and Reddy [25,26] developed state-space approach to

[^0]derive exact solutions for the natural frequencies and critical buckling loads of cross-ply composite beams. Chen et al. [27] also proposed an analytical solution based on state-space differential quadrature for vibration of composite beams. By using the dynamic stiffness matrix method, Jun et al. [28,29] calculated the natural frequencies of composite beams based on third-order beam theory. A literature review shows that although Ritz procedure is efficient to deal with static, buckling and vibration problems of composite beams with various boundary conditions, the research on this interesting topic is still limited.

The objectives of this paper is to develop a new trigonometricseries solution for analysis of composite beams with arbitrary layups. It is based on a higher-order theory which accounts for a higher-order variation of the axial displacement. By using Lagrange equations, the governing equations of motion are derived. Ritztype analytical solution with new trigonometric series is developed for beams under various boundary conditions. The convergence and verification studies are carried out to demonstrate the accuracy of the proposed solution. Numerical results are presented to investigate the effects of length-to-depth ratio, fibre angle and material anisotropy on the deflections, stresses, natural frequencies and critical buckling loads of composite beams.

2. Theoretical formulation

A laminated composite beam with rectangular section ($b \times h$) and length L as shown in Fig. 1 is considered. It is made of n plies

Fig. 1. Geometry of laminated composite beams.

Table 1
Trigonometric series for shape functions.

Boundary conditions	$\varphi_{j}(x)$	$\psi_{j}(x)$	$\xi_{j}(x)$
S-S	$\sin \frac{j \pi}{L} x$	$\cos \frac{j \pi}{L} x$	$\cos \frac{j \pi}{L} x$
C-F	$1-\cos \frac{(2 j-1) \pi}{2 L} x$	$\sin \frac{(2 j-1) \pi}{2 L} x$	$\sin \frac{(2 j-1) \pi}{2 L} x$
C-C	$\sin ^{2} \frac{j \pi}{L} x$	$\sin \frac{2 j \pi}{L} x$	$\sin \frac{2 j \pi}{L} x$

Table 2
Three different boundary conditions of beams.

BC	$x=0$	$x=L$
S-S	$w_{0}=0$	$w_{0}=0$
C-F	$u_{0}=0, w_{0}=0, \phi_{0}=0, w_{0, x}=0$	
C-C	$u_{0}=0, w_{0}=0, \phi_{0}=0, w_{0, x}=0$	$u_{0}=0, w_{0}=0, \phi_{0}=0, w_{0, x}=0$

of orthotropic materials in different fibre angles with respect to the x-axis.

2.1. Kinetic, strain and stress relations

The displacement field of refined higher-order deformation theory ([30-32]) is given by:
$u_{1}(x, z)=u_{0}(x)-z w_{0, x}+\left(\frac{5 z}{4}-\frac{5 z^{3}}{3 h^{2}}\right) \phi_{0}(x)$

$$
\begin{equation*}
=u_{0}(x)-z w_{0, x}+\Psi(z) \phi_{0}(x) \tag{1a}
\end{equation*}
$$

$u_{3}(x, z)=w_{0}(x)$
where u_{0}, ϕ_{0} and w_{0} are unknown mid-plane displacements of beam; Ψ is the shape function representing a higher-order variation of axial displacement; the comma indicates partial differentiation with respect to the coordinate subscript that follows.

The strain field of beams is given by:

$$
\begin{align*}
& \epsilon_{x x}(x, z)=u_{0, x}-z w_{0, x x}+\Psi(z) \phi_{0, x}=\epsilon_{x}^{0}+z \kappa_{x}^{b}+\Psi(z) \kappa_{x}^{s} \tag{2a}\\
& \gamma_{x z}(x, z)=\Psi_{, z} \phi_{0}=g(z) \phi_{0} \tag{2b}
\end{align*}
$$

where ϵ_{x}^{0} and $\kappa_{x}^{b}, \kappa_{x}^{s}$ are the axial strain and curvatures of the beam.
The stress of the $k^{\text {th }}$-layer is given by:

$$
\begin{align*}
& \sigma_{x x}^{(k)}(x, z)=\bar{Q}_{11}^{(k)}\left[\epsilon_{x}^{0}(x)+z \kappa_{x}^{b}(x)+\Psi(z) \kappa_{x}^{s}(x)\right] \tag{3a}\\
& \sigma_{x z}^{(k)}(x, z)=\bar{Q}_{55}^{(k)} \gamma_{x z}(x, z) \tag{3b}
\end{align*}
$$

Table 3
Convergence studies for normalized mid-span displacements, fundamental frequencies and critical buckling loads of $\left(0^{\circ} / 90^{\circ} / 0^{\circ}\right)$ composite beams ($L / h=5$, Material I , $E_{1} / E_{2}=40$).

BC	Number of series (m)							
	2	4	6	8	10	12	14	16
Deflection								
S-S	1.4978	1.4632	1.4685	1.4671	1.4676	1.4674	1.4675	1.4674
C-F	3.6160	4.0311	4.1035	4.1380	4.1499	4.1571	4.1604	4.1626
C-C	0.8696	0.9183	0.9274	0.9301	0.9311	0.9316	0.9319	0.9320
Fundamental frequency								
S-S	9.2084	9.2084	9.2084	9.2084	9.2084	9.2084	9.2084	9.2084
C-F	4.3499	4.2691	4.2473	4.2394	4.2359	4.2342	4.2332	4.2327
C-C	11.8716	11.6673	11.6269	11.6143	11.6093	11.6069	11.6056	11.6048
Critical buckling load								
S-S	8.6132	8.6132	8.6132	8.6132	8.6132	8.6132	8.6132	8.6132
C-F	4.7080	4.7080	4.7080	4.7080	4.7080	4.7080	4.7080	4.7080
C-C	11.6518	11.6518	11.6518	11.6518	11.6518	11.6518	11.6518	11.6518

Table 4
Normalized mid-span displacements of $\left(0^{\circ} / 90^{\circ} / 0^{\circ}\right)$ composite beam under a uniformly distributed load (Material II, $E_{1} / E_{2}=25$).

BC	Theory	L/h				
		5	10	20	30	50
S-S	Present	2.412	1.096	0.759	0.697	0.665
	Murthy et al. [11]	2.398	1.090	-	-	0.661
	Khdeir and Reddy [36]	2.412	1.096	-	-	0.665
	Vo and Thai (HBT) [14]	2.414	1.098	0.761	-	0.666
	Zenkour [37]	2.414	1.098	-	-	0.666
	Mantari and Canales [24]	-	1.097	-	-	-
C-F	Present	6.813	3.447	2.520	2.342	2.250
	Murthy et al. [11]	6.836	3.466	-	-	2.262
	Khdeir and Reddy [36]	6.824	3.455	-	-	2.251
	Vo and Thai (HBT) [14]	6.830	3.461	2.530	-	2.257
	Mantari and Canales [24]	-	3.459	-	-	-
C-C	Present	1.536	0.531	0.236	0.177	0.147
	Khdeir and Reddy [36]	1.537	0.532	-	-	0.147
	Mantari and Canales [24]	-	0.532	-	-	-

https://daneshyari.com/en/article/6479573

Download Persian Version:

https://daneshyari.com/article/6479573

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: kiennt@hcmute.edu.vn (T.-K. Nguyen).

