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a b s t r a c t

A new analytical solution based on a higher-order beam theory for static, buckling and vibration of lam-
inated composite beams is proposed in this paper. The governing equations of motion are derived from
Lagrange’s equations. An analytical solution based on trigonometric series, which satisfies various bound-
ary conditions, is developed to solve the problem. Numerical results are obtained to compare with pre-
vious studies and to investigate the effects of length-to-depth ratio, fibre angles and material anisotropy
on the deflections, stresses, natural frequencies and critical buckling loads of composite beams with var-
ious configurations.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Composite laminated beams have been increasingly used in the
various engineering fields for example in constructions, spacecraft,
aircraft, mechanical engineering, etc. In order to predict accurately
their structural responses, various beam theories with different
approaches have been developed. These beam theories can be
divided into three following categories: classical beam theory
(CBT), first-order beam theory (FBT) and higher-order theory
(HBT). A general review and assessment of these theories for com-
posite beams can be found in [1–3]. It should be noted that CBT is
only suitable for thin beams due to neglecting shear effect. FBT
overcomes this adverse by taking into account this effect. However
practically an appropriate shear correction is required. By using
higher-order variation of axial displacement, HBT predicts more
accurate than CBT and FBT, and importantly no shear correction
factor is necessary. Therefore, this theory has been increasingly
applied in predicting responses of composite beams.

For numerical methods, finite element method has been widely
used to analyze composite beams [4–17]. For analytical approach,
Navier solution is the simplest one, which is only applicable for
simply supported boundary conditions [18–20]. In order to deal
with arbitrary boundary conditions, many researchers developed
different methods. Ritz-type method is commonly used [21–24].
Khdeir and Reddy [25,26] developed state-space approach to

derive exact solutions for the natural frequencies and critical buck-
ling loads of cross-ply composite beams. Chen et al. [27] also pro-
posed an analytical solution based on state-space differential
quadrature for vibration of composite beams. By using the dynamic
stiffness matrix method, Jun et al. [28,29] calculated the natural
frequencies of composite beams based on third-order beam theory.
A literature review shows that although Ritz procedure is efficient
to deal with static, buckling and vibration problems of composite
beams with various boundary conditions, the research on this
interesting topic is still limited.

The objectives of this paper is to develop a new trigonometric-
series solution for analysis of composite beams with arbitrary lay-
ups. It is based on a higher-order theory which accounts for a
higher-order variation of the axial displacement. By using Lagrange
equations, the governing equations of motion are derived. Ritz-
type analytical solution with new trigonometric series is developed
for beams under various boundary conditions. The convergence
and verification studies are carried out to demonstrate the accu-
racy of the proposed solution. Numerical results are presented to
investigate the effects of length-to-depth ratio, fibre angle and
material anisotropy on the deflections, stresses, natural frequen-
cies and critical buckling loads of composite beams.

2. Theoretical formulation

A laminated composite beam with rectangular section (b� h)
and length L as shown in Fig. 1 is considered. It is made of n plies
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of orthotropic materials in different fibre angles with respect to the
x-axis.

2.1. Kinetic, strain and stress relations

The displacement field of refined higher-order deformation the-
ory ([30–32]) is given by:

u1ðx; zÞ ¼ u0ðxÞ � zw0;x þ 5z
4

� 5z3

3h2

� �
/0ðxÞ

¼ u0ðxÞ � zw0;x þWðzÞ/0ðxÞ ð1aÞ

u3ðx; zÞ ¼ w0ðxÞ ð1bÞ
where u0; /0 and w0 are unknown mid-plane displacements of
beam;W is the shape function representing a higher-order variation
of axial displacement; the comma indicates partial differentiation
with respect to the coordinate subscript that follows.

The strain field of beams is given by:

�xxðx; zÞ ¼ u0;x � zw0;xx þWðzÞ/0;x ¼ �0x þ zjb
x þWðzÞjs

x ð2aÞ

cxzðx; zÞ ¼ W;z/0 ¼ gðzÞ/0 ð2bÞ
where �0x and jb

x ; js
x are the axial strain and curvatures of the beam.

The stress of the kth-layer is given by:

rðkÞ
xx ðx; zÞ ¼ Q ðkÞ

11 �0x ðxÞ þ zjb
xðxÞ þWðzÞjs

xðxÞ
� � ð3aÞ

rðkÞ
xz ðx; zÞ ¼ Q ðkÞ

55cxzðx; zÞ ð3bÞ

Table 3
Convergence studies for normalized mid-span displacements, fundamental frequencies and critical buckling loads of (0�/90�/0�) composite beams (L=h ¼ 5, Material I,
E1=E2 ¼ 40).

BC Number of series (m)

2 4 6 8 10 12 14 16

Deflection
S–S 1.4978 1.4632 1.4685 1.4671 1.4676 1.4674 1.4675 1.4674
C–F 3.6160 4.0311 4.1035 4.1380 4.1499 4.1571 4.1604 4.1626
C–C 0.8696 0.9183 0.9274 0.9301 0.9311 0.9316 0.9319 0.9320

Fundamental frequency
S–S 9.2084 9.2084 9.2084 9.2084 9.2084 9.2084 9.2084 9.2084
C–F 4.3499 4.2691 4.2473 4.2394 4.2359 4.2342 4.2332 4.2327
C–C 11.8716 11.6673 11.6269 11.6143 11.6093 11.6069 11.6056 11.6048

Critical buckling load
S–S 8.6132 8.6132 8.6132 8.6132 8.6132 8.6132 8.6132 8.6132
C–F 4.7080 4.7080 4.7080 4.7080 4.7080 4.7080 4.7080 4.7080
C–C 11.6518 11.6518 11.6518 11.6518 11.6518 11.6518 11.6518 11.6518

Table 4
Normalized mid-span displacements of (0�/90�/0�) composite beam under a uniformly distributed load (Material II, E1=E2 ¼ 25).

BC Theory L=h

5 10 20 30 50

S–S Present 2.412 1.096 0.759 0.697 0.665
Murthy et al. [11] 2.398 1.090 – – 0.661
Khdeir and Reddy [36] 2.412 1.096 – – 0.665
Vo and Thai (HBT) [14] 2.414 1.098 0.761 – 0.666
Zenkour [37] 2.414 1.098 – – 0.666
Mantari and Canales [24] – 1.097 – – –

C–F Present 6.813 3.447 2.520 2.342 2.250
Murthy et al. [11] 6.836 3.466 – – 2.262
Khdeir and Reddy [36] 6.824 3.455 – – 2.251
Vo and Thai (HBT) [14] 6.830 3.461 2.530 – 2.257
Mantari and Canales [24] – 3.459 – – –

C–C Present 1.536 0.531 0.236 0.177 0.147
Khdeir and Reddy [36] 1.537 0.532 – – 0.147
Mantari and Canales [24] – 0.532 – – –

Fig. 1. Geometry of laminated composite beams.

Table 1
Trigonometric series for shape functions.

Boundary conditions uj (x) wj (x) nj (x)

S–S sin jp
L x cos jp

L x cos jp
L x

C–F 1� cos ð2j�1Þp
2L x sin ð2j�1Þp

2L x sin ð2j�1Þp
2L x

C–C sin2 jp
L x sin 2jp

L x sin 2jp
L x

Table 2
Three different boundary conditions of beams.

BC x ¼ 0 x ¼ L

S–S w0 ¼ 0 w0 ¼ 0
C–F u0 ¼ 0; w0 ¼ 0; /0 ¼ 0; w0;x ¼ 0
C–C u0 ¼ 0; w0 ¼ 0; /0 ¼ 0; w0;x ¼ 0 u0 ¼ 0; w0 ¼ 0; /0 ¼ 0; w0;x ¼ 0
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