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A three dimensional (3D) augmented finite element method (AFEM) for modeling arbitrary cracking
without the need of additional degree of freedom (DoFs) or phantom nodes is presented. Four or three
internal nodes are employed to explain displacement jump due to the weak and strong discontinuity.
In this method, damage and discontinuity are treated from a weak discontinuity to a strong one without

additional degree of freedom and without explicit representation of the crack. A fully condensed elemen-
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tal equilibrium equations as mathematical exactness in the piece-wise linear sense is explicitly derived
within AFEM formulation. The method is implemented in ABAQUS 4-node tetrahedron user element with
a local crack tracking method for crack path detection. Through some numerical examples, it is shown
that the 3D AFEM can accurately and efficiently crack initiation and propagation.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate assessment of the structural integrity involves the
development of complex progressive damage analysis with high-
fidelity. Since standard finite element method is not suitable to
model strong discontinuity and crack, advanced finite elements
and numerical methods are developed to explicitly take into
account the cracking and damage in the material, e.g., the general-
ized finite element method (GFEM), extended finite element
method (XFEM) [1-8], phantom node method (PNM) [9-14], aug-
mented finite element method [15-18], and meshless methods
[19-25].

The generalized finite element, extended finite element and
phantom node methods have been developed based on theory of
the partition of unity and in essence introduce additional degree
of freedom to account for arbitrary cracking. In the case of individ-
ual crack, these methods are mesh independent and effective. The
shortcomings in these methods are a) the computational cost is
very expensive due to additional degree of freedom, b) multiple
crack interactions have to be established in the framework of these
methods despite some recent articles to deal with multiple crack
interactions [5,26,27]. In this regard approaches such as phase field
[28-30] and embedded discontinuity [31-36] are developed to
cope with arbitrary interacting cracks. Other emerging methods
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for failure analyses include the regularized FEM (RXFEM) of larve
et al. [37] and the continuum-decohesion FEM by Waas and co-
workers [38].

Phase field model introduces an additional nodal DoF to approx-
imate a fracture surface with a continuous phase-field parameter
and does not need to algorithmically trace fracture. However, the
method is mesh-dependent and requires an extremely refined
mesh to resolve the sharp discontinuity across the crack surfaces
[39]. In embedded discontinuity method, special shape functions
are used to account for the discontinuous crack displacements
within an element [35]. Though, the special care must be taken
for constructing shape functions orthogonality property to avoid
spurious deformation or serious stress locking.

Meshless method which is based on interaction of each node
with all its neighbor is another alternative to cope with arbitrary
cracking problems in solids. The discrete nature of these mesh-
free methods makes it easier in handling multiple crack interaction
problems. Some recent advances in meshless method are the use of
extrinsically enriched methods based on the partition of unity
(PoU) theory [20-22] and the use of weight function enrichment
[24,25].

A crack tracing method is a major part of modeling arbitrary
cracking and is of particular challenge in simulation of 3D solid’s
failure. Many algorithms for tracing crack path have been devel-
oped [39-54]. Four common crack tracking methods are available
including the local tracking method, the non-local tracking
method, the global tracking method, and the level set methods.
Advantages and shortcomings of the tracking methods are
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summarized in Table 1. More details on crack tracking algorithms
are referred to Jager et al. [54]

It is noted that most of the above mentioned tracking methods
(non-local, global, level set) may not be suitable for heterogeneous
materials such as laminated or textile composites. Hence, we apply
local tracking algorithm to trace crack path.

In the current paper, we seek to extend 2D augmented finite
element method (AFEM), which has been proven to be able to
account for multiple, arbitrary cracks and crack interactions in
solids with much improved numerical efficiency [15-17] to
account for 3D crack evolution in solids. The AFEM lies in the cat-
egory of the embedded discontinuity method without employing
discontinuous shape functions.

The remainder of this paper is organized as follows: After a
short review of the problem statement and governing equations
in Section 2, we briefly discuss the finite element discretization
within the frame-work AFEM scheme in Section 3. Section 4 dis-
cusses the local crack tracing algorithm used in this study. Then,
several numerical examples will be presented as compared with
other works in Section 5. Finally, Section 6 concludes the paper
with major highlights and numerical achievements.

2. Problem statement

Assume the 3D domain Q of Fig. 1 is cut by a discontinuity into
two sub-domains of Q" and Q. The discontinuity is assumed to be
a cohesive crack with interface of I'. =T’} UT.. For '} =T, the
discontinuity is weak and the interface is connected, while for
strong discontinuity two surfaces are separated. The f and u are
prescribed traction and displacement on boundary of I';, and I',,
respectively. The strong form of equilibrium equations along with
boundary conditions are

Div(e") =0 (¥xe€Q)
o -n =f" (vxel})

Div(e~) =0
6 -n =f

(Vxe Q)
(vxeIy)

where n* and n- are the outward normal of discontinuity surfaces,
and 6" and ¢~ are the stresses in subdomains.

From the stress continuity across the discontinuity boundary, it
follows.

(1)

ut=u’ (vxel'y) w=u (vxeT))
tt=0"-n"=-t (VxeI}) t =6 -n =t (Vxel),)

where t" and t~ are the tractions along the discontinuity surfaces
and u* and u- are the displacement fields in Q" and Q°,
respectively.

The traction is a function of the relative displacements
(t =t(Au)) between I'Y and I';, where the relative displacement
is Au=u* —u .where u* and u- are the displacement fields in
QF and Q7, respectively. The constitutive law for traction-
separation is a piece-wise linear in this study (See Appendix A).

The constitutive law and kinematic equations for subdomain Q
with the assumption of small strain and elastic behavior are writ-
ten as

ot =C":¢g" (in Q") 6 =C:¢g (inQ)
g =gt(ut) = [vw + (Vu+)T] /2 (in Q") 3)
& =g (u)= [Vu* + (Vu*)T] /2 (in Q)

where C™ and C™ are the material stiffness tensors of the two sub-
domains traversed by the discontinuity, respectively. They are iden-
tical for homogeneous materials and different for heterogeneous
materials.

The strong form of Eq. (3) can be written into a weak form using
the principle of virtual work.

Table 1

Summary of crack tracking methods.
Tracking Remarks
method

Local method The crack surface is largely determined by the local elements
immediately ahead of a crack front, subjecting to possible
constraints from its neighboring crack points and surfaces
[7,42,43]. The crack surface is of C° continuity, the compu-
tational cost is relatively low

Drawback: The method may have difficulty in modeling non-
planar crack

The crack surface is based on a least-squares fit to extend the
existing crack surface as smoothly as possible [45,46]. Crack
surface has less spurious zick-zack-type crack surfaces
Drawback: The computational cost of this method is high, the
crack surface may deviate from the real path, the complexity
of implementation is relatively high.

An additional equation (heat conduction like) is introduced to
track the crack front and provide iso-surface for crack [47,48].
The method is computationally robust and the crack surface
the outcome of the solution of additional equation
Drawback: It is computationally expensive due to the extra
DoFs from heat conduction equation and requires a judicial
choice of an initial boundary condition which is not always
obvious for multiple cracking problems or different material
interfaces.

Signed distance functions is used to describe the crack
surfaces [51-53]

Drawback: There are some issues with freezing the crack
surfaces as a crack grows, and inadequacy of finite element
mesh for accurately solving the differential equations

Non-local
method

Global
method

Level set
method

Discontinuity

Fig. 1. Elastic body configuration with an arbitrary discontinuity.
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3. AFEM formulation for A 3D 4-node tetrahedron

In this section we describe how to augment a 3D tetrahedron
element with only regular nodes and DoFs. More details can be
found in the work of Yang and co-workers [15-18]. A 4-node tetra-
hedron element is chosen to demonstrate the AFEM scheme
(Fig. 2). As cut by a cohesive crack, there are two possibilities for
tetrahedron cut including a) a tetrahedron sub-domain and a
wedge sub-domain (Fig. 2b), b) two wedge sub-domains (Fig. 2c).
Regular or external nodes and internal nodes are shown in cut ele-
ment of Fig. 2. The crack front always resides at element bound-
aries during its propagation [17,18] and it is also assumed that
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