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a b s t r a c t

In this paper a new design methodology is presented to optimize the natural frequencies of axially func-
tionally graded beams and arches by tailoring appropriately their material distribution. Functionally
Graded Materials (FGMs) are deemed to have an advantageous behavior over laminated composites
due to the continuous variation of their material properties yet in all three dimensions which alleviate
delamination, de-bonding and matrix cracking initiation issues. The design of FGM structures is ideally
fitted to optimization techniques, as the optimum material composition is derived by varying the relative
volume fraction of the constituent materials. In this study the Differential Evolution (DE) is employed for
optimizing the natural frequencies of axially FG beams and arches. The evaluation of the objective func-
tion requires the solution of a free vibration problem of an arch with variable mass and stiffness proper-
ties. The arches are modeled using a generic curved beam model that includes both axial (tangential) and
transverse (normal) deformation and the problem is solved using the analog equation method (AEM) for
hyperbolic differential equations with variable coefficients. The Mori-Tanaka homogenization scheme is
adopted in this investigation for the estimation of the effective material properties. Several beams and
arches are analyzed, which illustrate the design method and demonstrate its efficiency. In this work,
and without restricting the generality, the FGM is comprised of steel and aluminum. The volume fraction
of steel is assumed to follow two alternative distributions, namely a four-parameter power law distribu-
tion (FGM-1) or a five-parameter trigonometric distribution (FGM-2). In all cases three model problems
are examined. We seek the material distribution that the FGM structure vibrates with (i) the maximum
fundamental frequency, (ii) the minimummass and the fundamental frequency greater than a prescribed
value and (iii) the minimum mass and frequencies which lie outside certain frequency bands.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this work a new design methodology is presented to optimize
the natural frequencies of axially functionally graded beams and
arches by tailoring appropriately their material distribution. The
philosophy behind the concept of Functionally Graded Material
(FGM) is to construct a heterogeneous composite which performs
as a single-phase material, by unifying the best properties of its
constituent phase materials. FGMs are deemed to have an advanta-
geous behavior over laminated composites due to the continuous
variation of their material properties yet in all three dimensions

which alleviate delamination, de-bonding and matrix cracking ini-
tiation issues. The design of FGM structures is ideally fitted to opti-
mization techniques, as the optimum material composition is
derived by varying the relative volume fraction of the constituent
materials.

The endeavor to control the natural frequencies of a structure or
structural element is a challenging and demanding task. By varying
the mass and stiffness properties the design engineer seeks the
structure to vibrate in accord to certain predefined criteria. This
can be achieved via different types of structural optimization such
as topology, shape or size [1], the detailed presentation of which is
not the scope of this research. Besides the previous optimization
techniques, the newly emerged FG materials have driven several
researchers to address the so-called material volume fraction opti-
mization. Qian and Batra [2] used a genetic algorithm together
with a meshless local Petrov–Galerkin method and a higher-
order deformable plate theory to find the compositional profile of
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a two-constituent cantilever plate so that either the first or the sec-
ond natural frequency is maximum. In their work the volume frac-
tion was assumed to vary according a simple power law along the
thickness and longitudinal direction. Goupee and Vel [3] also used
a genetic algorithm to optimize the natural frequencies of func-
tionally graded beams employing the element free Galerkin
Method to analyze the free vibration problem. They treated the
beam as a plane stress problem using a piecewise bicubic interpo-
lation of volume fraction specified at a finite number of grid points.
In 2014, Alshabatat and Naghshineh [4] using an optimizer based
on a genetic algorithm, determined the optimal profiles of volume
fraction of beam constituent materials with the goal of maximizing
the fundamental frequency which was computed via the Finite Ele-
ment Method (FEM). In that paper they also presented two novel
laws for describing the volume fractions of a FGM beam. The first
one was a complex power law and the second one a trigonometric
law.

A more complex optimization procedure for controlling the nat-
ural frequencies of FG materials has been proposed by some schol-
ars. In this case, the simultaneous structural topology and material
optimization has been addressed as a better alternative to the sim-
ple shape or material composition design. Rubio et al. [5], in 2011,
presented a technique in order to achieve maximum and/or mini-
mum vibration amplitudes at certain points of a structure, finding
simultaneously the topology and material gradation function,
whilst in 2014, Taheri and Hassani [1] developed a fully
isogeometrical approach for the simultaneous shape and material
composition design of FG structures to optimize their
eigenfrequencies.

Although there have been a significant number of research
papers on the analysis of the free vibration of FG arches [6–14],
to the authors’ knowledge, no work has been done on the design
of axially FG arches for optimal natural frequencies. In our work
the Differential Evolution (DE), a powerful metaheuristic algo-
rithm, is employed for optimizing the natural frequencies of axially
FG beams and arches. Nowadays, metaheuristic algorithms have
emerged as one of the best ways for solving complex optimization
problems. These algorithms are usually inspired by evolution,
swarm intelligence or physical phenomena principles and their
widespread use is justified by a number of important advantages
such as easy implementation, lack of dependency on gradient or
other problem-specific information and good performance with
global search characteristics [15].

The evaluation of the objective function requires the solution of
the free vibration problem of an arch with variable mass and stiff-
ness properties. The arch is modeled using a generic curved beam
model that includes both axial (tangential) and transverse (nor-
mal) deformation, and is also able to account for variable mass
and stiffness properties, as well as elastic support or restraint.
The resulting dynamic governing equations of the circular arch
are formulated in terms of the displacements and solved using
an efficient integral equation method [18–20]. Moreover, for the
estimation of the effective material properties of two-phase FG
materials several homogenization methods have been proposed.
The two foremost are the self-consistent [21] scheme and the
Mori-Tanaka [22] scheme. The former has been originally intro-
duced to compute the mechanical response of polycrystals and
takes into account the interaction of the matrix and the grains
using Eshelby’s solution, while the latter has been proposed by
Tanaka and Mori for composite materials involving only two
phases and, it is assumed that the inclusions in the RVE, experience
the matrix strain as the far-field strain in the Eshelby theory [23].
In this investigation the Mori-Tanaka [22] homogenization scheme
is adopted for the estimation of the effective material properties.
The method works well in instances where the microstructure con-
sists of clearly defined matrix and particulate phases [3].

Several beams and arches are analyzed, which illustrate the
design method and demonstrate its efficiency. In this work, and
without restricting the generality, the FGM is comprised of steel
and aluminum. The volume fraction of steel is assumed to follow
two alternative distributions, namely a four-parameter power
law distribution (FGM-1) or a five-parameter trigonometric distri-
bution (FGM-2). In all cases three model problems are examined.
We seek the material distribution that the axially FGM structure
vibrates with (i) the maximum fundamental frequency, (ii) the
minimummass and the fundamental frequency greater than a pre-
scribed value and (iii) the minimum mass and frequencies which
lie outside certain frequency bands.

2. Modelling and numerical formulation

2.1. Governing equations

Consider a plane curved beam the cross-sections of which are
orthogonal to a plane curve (centroid axis) that belongs to the xz
plane (see Fig. 1a). A curvilinear abscissa s spans the curved beam’s
centroid axis which undergoes the combined action of the dis-
tributed loads pt ¼ ptðsÞ and pn ¼ pnðsÞ acting in the tangential
and normal direction, respectively (see Fig. 1b). The curved beam
may have a cross-section with variable properties, that is, the axial
EAðsÞ and bending stiffness EIðsÞ vary due to heterogeneous linearly
elastic material E ¼ EðsÞ.

The differential equations of equilibrium are derived by consid-
ering the equilibrium of an elementary section in projections onto
the tangential t and the normal n directions and in moments with
respect to one of the beam’s ends [24]. Taking also into account the
inertia and damping forces, we arrive at the following equations of
motion [20]

�m€u� c _uþ EA u;s þ
w
R

� �h i
;s ¼ �pt ð1Þ

�m€w� c _w� EI w;ss þ
w

R2

� �� �
;ss �

1
R

EA u;s þ
w
R

� �
þ EI

R
w;ss þ

w

R2

� �� �
¼ �pn ð2Þ

where m ¼ mðsÞ ¼ qAðsÞ is the mass density per unit length, c is the
coefficient of viscous damping, R is the radius of the arch; uðsÞ and
w ¼ wðsÞ are the tangential and normal displacements, respectively.
In addition, the subscript s preceded by comma denotes partial dif-
ferentiation with respect to the curvilinear abscissa s.

The boundary conditions of the problem, that can include elas-
tic support or restraint, are of the form

a1uð0; tÞ þ a2Nð0; tÞ ¼ 0 ð3Þ

�a1uðl; tÞ þ �a2Nðl; tÞ ¼ 0 ð4Þ

b1wð0; tÞ þ b2Qð0; tÞ ¼ 0 ð5Þ

�b1wðl; tÞ þ �b2Qðl; tÞ ¼ 0 ð6Þ

c1hð0; tÞ þ c2Mð0; tÞ ¼ 0 ð7Þ

�c1hðl; tÞ þ �c2Mðl; tÞ ¼ 0 ð8Þ
where ak; �ak;bk;

�bk; ck; �ck ðk ¼ 1;2Þ are given constants and
h ¼ �w;s þ u=R is the slope of the cross-section. It is apparent that
all types of the conventional boundary conditions (clamped, simply
supported etc.) can be derived from Eqs. (3)–(8) by specifying
appropriately these constants.

The stress resultants appearing in the aforementioned equa-
tions are specified as [20]
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