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a b s t r a c t

Featured by the two material length parameters in the nonlocal strain gradient theory, it is still unknown
that what are the boundary conditions of nonlocal strain gradient beams, since the equations of motion
and boundary conditions of these beam models appear in the same form as those of the classical ones.
Based on the weighted residual approaches, this paper provides the boundary value problems of
Euler–Bernoulli beams within the framework of the nonlocal strain gradient theory in conjunction with
the von Kármán nonlinear geometric relation. The closed-form solutions for bending and buckling loads
of nonlocal strain gradient beams are obtained. Numerical results show that the higher-order boundary
conditions have no effect on the static bending deflection of beams for the cases studied. However, the
higher-order boundary conditions and the material length parameters have a significant effect on the
buckling loads. Finally, when the two material length parameters are the same, the buckling loads can
not always reduce to the classical solutions, the findings of which violate our expectations. The results
provided in this work are expected to be helpful for the applications of this theory to the analysis of engi-
neering structures.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering structures such as beams, plates and shells have
been widely used in micro- and nano-sized sensors, actuators,
atomic force microscopes. In these applications, size effects of
material properties are observed at small sizes both in experimen-
tal works [1–4] and in numerical simulations [5–7]. The aforemen-
tioned works show that the materials exhibit either stiffening
behaviors or softening behaviors in comparison to the bulk cases.
Therefore, continuum theories that can capture the size effects of
materials at small sizes have attracted considerable attention in
the research communities with the view toward a better under-
standing and characterization of materials.

Based on the concept that the stress at a reference point is not
only a function of the reference point, but also the strain at all
points of the body, Eringen [8] developed an elasticity theory for
the applications in surface waves. With the emerging of carbon
nanotubes and graphene sheets, this theory have been extended
to the study of the static and dynamic behaviors of structures in
terms of rods [9–14], beams [14–25], plates [26–33] and shells
[34–38]. For more details, the interested reader may refer to the
recent reviews by Arash and Wang [39] and Eltaher, et al. [40].

In general, the use of this theory results in the softening effect
when it is compared with the classical elasticity theory. However,
two issues violate the softening phenomena. The first issue is that
the bending solutions of nonlocal models in some cases are found
to be the same as the classical solutions. In other words, the size
effects vanish for cantilever beams subjected to concentrated
forces [41]. To address this issue, Challamel and Wang [42] pro-
posed a gradient elastic model as well as an integral nonlocal elas-
tic model that is based on combining the local and the nonlocal
curvatures in the constitutive relation. After this, several fresh
ideas are raised to clarify this issue [16,43–46]. For example, Khod-
abakhshi and Reddy [43] developed a unified integro-differential
nonlocal elasticity model and used this model to the bending of
Euler–Bernoulli beams. Fernández-Sáez et al. [46] investigated
the bending problems of Euler–Bernoulli beams using the Eringen
integral constitutive equation. The closed-form bending solutions
of Euler–Bernoulli beams and Timoshenko beams subjected to dif-
ferent loading and boundary conditions were carried out by Tuna
and Kirca [16]. It appears that the first issue can be solved with
the aid of the integro-differential nonlocal elasticity theory. The
second issue is that one can only obtain a few natural frequencies
of free vibrations of cantilever beams and that the counterintuitive
stiffening effect is observed. This issue has been analytically solved
by Xu et al. [47] using the weighted residual approaches (WRAs). In
their work, they reformulated the variational-consistent boundary
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conditions, and presented the closed-form frequency solutions for
Euler–Bernoulli beams and Timoshenko beams. The solutions of
the above-mentioned issues demonstrate that, when one uses
the nonlocal elasticity, the boundary conditions should be correctly
employed rather than simply replacing the classical force resul-
tants by the nonclassical force resultants in the equilibrium
equations.

Within the framework of strain gradient elasticity theory, it
emphasizes that materials constituting the body can be considered
as atoms with higher-order deformation mechanism at small
scales. Significant contributions in this field can be found in Mind-
lin and Tiersten [48], Toupin [49], recently in Yang et al. [50], Lam
et al. [1] and Zhou et al. [51] and literature therein. This theory has
been adopted to solve boundary value problems of static and
dynamic behaviors of structures. For example, Papargyri-Beskou
et al. [52] investigated the effects of the material length parame-
ters on the bending and buckling of Euler–Bernoulli beams. Since
then, the strain gradient theory has been widely used in modelling
the micro- and nano-sized beams [53–67], plates [32,68–79] and
shells [80–83]. These works show a stiffening effect for structures
with characteristic sizes reducing to small sizes.

In order to bring both of the length scales into a combined elas-
tic theory such that the stiffening effects and the softening effects
of materials can be well described, Lim et al. [84] proposed a
higher-order nonlocal strain gradient theory and applied the non-
local strain gradient beam models to the study of the wave propa-
gation. After that, several works dealing with buckling [85], free
vibration [86,87] and wave propagation [88] of beams are reported.
In these works, they emphasize that the classical results will be
obtained for the same material length parameters. Since the partial
differential order of the governing equation(s) of motion increases,
the boundary value problems of structures modelled by the nonlo-
cal strain gradient theory should be treated carefully. However,
similar works have not been reported in the literature. For more
details of nonlocal strain gradient models, one can refer to
Papargyri-Beskou et al. [52], Li et al. [60], Akgöz and Civalek [57],
Lazopoulos and Lazopoulos [59], Liang et al. [65] and Xu and Deng
[66] for developing appropriate method to solve the boundary
value problems.

The present paper is motivated by the fact that the higher-order
boundary conditions induced by the nonlocal strain gradient the-
ory should play a significant role on the buckling behaviors of
Euler–Bernoulli beams. Therefore, the objective of the present
work is to use the WRAs to derive the variational-consistent
boundary conditions of nonlocal strain gradient beams, and to pre-
sent the closed-form buckling solutions for beams subjected to
various boundary conditions in which the effect of higher-order
boundary conditions on the buckling loads is highlighted.

The structure of this paper is as follows. Section 2 briefly sum-
marizes the nonlocal strain gradient theory. In Section 3, the gov-
erning equations of motion of nonlocal strain gradient Euler–
Bernoulli beams in conjunction with the von Kármán nonlinear
geometric relation are given, and the variational-consistent bound-
ary conditions are derived by the WRAs. After the closed-form
solutions of beam bending problems given in Section 4, the buck-
ling solutions for beams subjected to three typical boundary condi-
tions are addressed in Section 5. Finally, the conclusions are drawn
in Section 6.

2. Nonlocal strain gradient theory

Motivated by the observations that materials at small scales
exhibit either softening behaviors or stiffening behaviors, Lim
et al. [84] developed an elastic theory which combines both the
nonlocal elasticity theory and the strain gradient theory. Within

the framework of this theory, the concept of the higher-order non-
local strain gradient elasticity is proposed

t ¼ r�r � r�; ð1Þ
where t is the total stress tensor of nonlocal strain gradient theory,
r is the gradient symbol. The stress tensor r and higher-order
stress tensor r� are given by

r ¼
Z
V
K0ðy;x; le0ÞC : eyðyÞ dV ð2Þ

r� ¼ l2m

Z
V
K1ðy;x; le1ÞC : reyðyÞ dV ð3Þ

where e is the classical strain tensor, C is the usual fourth-order
elasticity tensor, lm is the internal length parameter, le0; le1 are non-
local parameters, Kiðy;x; leiÞ; i ¼ 0;1 is the attenuation kernel
function.

Mathematically, it is difficult to solve the above integral consti-
tutive equations, Lim et al. [84] then, following the Eringen’s
method, introduced a simple constitutive equation

ð1� l2er2Þt ¼ C : e� l2mC : r2e ð4Þ
For one-dimensional problems, the above constitutive equation

reduces to

1� l2e
d2

dx2

 !
txx ¼ Eexx � l2mEexx;xx: ð5Þ

Note that Eq. (5) contains two material length parameters. The
first one indicates the nonlocal effect, and the second one denotes
the size effect due to the higher-order strain gradient. Additionally,
the nonlocal elasticity [8] and the strain gradient theory [89–91]
can be obtained by taking lm ¼ 0 and le ¼ 0, respectively.

3. Basic equations of nonlocal strain gradient beams

For preliminaries, we first present in Section 3.1 the main pro-
cedures developed in the literature to the boundary value prob-
lems of the nonlocal strain gradient beams. How the boundary
conditions are obtained can be easily identified. Then, we use the
WRAs to formulate the variational-consistent boundary conditions
in Section 3.2.

3.1. Governing equations: A summary

We consider an elastic beam of length L, width b and thickness
h. The x-axis is taken along the length of the beam, and z-axis is
along the thickness of the beam. According to the Euler–Bernoulli
beam theory, the displacements (u1, u2, u3) along the (x, z) coordi-
nate directions are given by

u1ðx; zÞ ¼ uðxÞ � zw0; u2ðx; zÞ ¼ 0; u3ðx; zÞ ¼ wðxÞ; ð6Þ
where u, w are the axial and the transverse displacements of the
beam mid-plane; the prime denotes the spatial differentiation with
respect to variable x.

The only non-vanishing strain for a beam under large displace-
ments can be captured by the von Kármán nonlinear strain, i.e.,

exx ¼ u0
1 þ

1
2
u02
3 ¼ u0 þ 1

2
w02 � zw00; ð7Þ

where exx is the longitudinal strain.
Next, we will present the detailed derivation of the governing

equation and boundary conditions. With this aim at hand,
we first give the following virtual work of the strain energy as
follows
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