
A study on the influence of boundary conditions in computational
homogenization of periodic structures with application to woven
composites

J.J. Espadas-Escalante ⇑, N.P. van Dijk, P. Isaksson
The Ȧngström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden

a r t i c l e i n f o

Article history:
Received 7 September 2016
Accepted 19 October 2016
Available online 21 October 2016

Keywords:
Computational homogenization
Mixed boundary conditions
Heterogeneous structures
Elastic properties
Woven composites
Finite element method

a b s t r a c t

The influence of boundary conditions (BCs) in the estimation of elastic properties of periodic structures is
investigated using computational homogenization with special focus on planar structures. Uniform dis-
placement, uniform traction, periodic, in-plane periodic and a proposed mix of periodic and traction BCs
are used. First, the effect of the BCs is demonstrated in structures with one-, two- and three-dimensional
periodicity. Mixed BCs are shown to most accurately represent the behavior of layered structures with a
small number of repeating unit cells. Then, BCs are imposed on a twill woven composite architecture.
Special attention is devoted to investigate the sensitivity of the estimated properties with respect to
the BCs and to show differences when considering a single lamina or a laminate. High sensitivity of
the in-plane extensional modulus and Poisson’s ratio with respect to the type of BCs is found.
Moreover, it is shown that the mix of BCs and in-plane periodic BCs are capable to represent an experi-
mental strain field.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The use of computational homogenization to estimate mechan-
ical properties of heterogeneous materials is widely accepted cf.
[1,2]. This finite element-based approach can be used in periodic
and non-periodic structures. It can be performed using different
types of boundary conditions (BCs), uniform displacement bound-
ary conditions (UDBCs), uniform traction boundary conditions
(UTBCs), periodic boundary conditions (PBCs) and also a combina-
tion of these. It has been shown that using UDBCs and UTBCs a
large number of repeating unit cells (RUCs) is required to accu-
rately represent periodic structures, while a low number is needed
when PBCs are used. For a small number of RUCs, UDBCs overesti-
mates and UTBCs underestimates the stiffness in comparison to
PBCs [2–4].

Due to the complex microstructure of woven composites, com-
putational homogenization is commonly used for the estimation of
their elastic constants. This is typically performed with PBCs [5–7]
or UDBCs [8,9]. When using PBCs, selection of the RUC is not
unique and the solution is independent of its choice [10]. This
becomes important if periodicity of a single lamina or a laminate

want to be represented with a RUC. This might be one of the under-
lying reasons for discrepancies reported in literature between
numerical-experimental results and also between numerical
techniques.

Zhang and Harding [8] used homogenization with UDBCs in a
plain woven composite and reported over-prediction of experi-
mental results. Also, Byström [7] compared homogenization tech-
niques also in a plain woven composite, and results were
compared with experimental data of laminates. The source of dis-
crepancies between numerical and experimental data was
reported unknown. Angioni et al. [6] compared a computational
homogenization technique based on asymptotic expansion with
four analytical methods. They used PBCs in RUCs of different
woven architectures and their results were compared with exper-
imental data of laminates. All theoretical results underestimated
the experimental data, even when idealizations in the model (such
as perfect bonding of matrix-fibers and zero structural defects) was
made. They found in a woven composite with a so-called 8H fabric
architecture differences in the in-plane modulus of elasticity of
about 70%. For a so-called 5H architecture, differences of roughly
400% in the in-plane Poisson’s ratio were found. These differences
were attributed to the fact that the model was for a single lamina
while the available data was for laminates. Moreover, in-plane
properties of laminates of different number of layers have been
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compared experimentally for a 2 � 2 twill architecture [11], find-
ing negligible differences. To the best of our knowledge, Jekabsons
and Byström [12] have reported probably the only work that has
compared experimentally the in-plane properties of a single lam-
ina and those for a laminate of a plain woven composite. They
found significant differences, specially in the Poisson’s ratios. They
used homogenization with PBCs and concluded that the exact
localization of the boundary between a lamina and a laminate
was unknown. Matveev [13] made a comparison of the in-plane
modulus of elasticity of a twill composite using UDBCs, PBCs and
a mix of UDBCs and PBCs, finding differences of about 20%. How-
ever, UTBCs and the effect in the other elastic properties was not
reported.

The effect of performing homogenization using UTBCs in woven
composites is lacking in literature, and in the best of our knowl-
edge, a formal study devoted to investigate the sensitivity of the
estimated properties with respect to the BCs in a single lamina
and a laminate has not been done. Therefore, this study first inves-
tigates the effect of BCs in the estimated properties of structures
with one-, two- and three-dimensional periodicity. A mix of PBCs
and UTBCs (Mixed-BCs) is proposed, overcoming some of the
drawbacks presented by the other types of BCs in planar structures.
Then, such BCs are applied to a single lamina and up to a three-
layered woven composite laminate with a 2 � 2 twill architecture.
Sensitivity of the estimated properties with respect to the BCs is
shown and differences between a single lamina and a laminate
are illustrated. Finally, strain fields produced with the different
BCs are compared with experimental data reported in literature.

2. Computational homogenization of composite media

2.1. Constitutive relations

The general aim of the computational homogenization in this
study is to find the constitutive relation between stresses and
strains. This is done by calculating average stresses (rij) by given
average strains (�eij), or conversely, by given �rij, calculate �eij. Hence,
a linear elastic constitutive relation (considered herein) can be
written in matrix–vector form using Voigt notation as,

�r ¼ �C�e ð1Þ
where �C ¼ �S�1 is the stiffness matrix or the inverse of the compli-
ance matrix [14]. Elastic constants are more easily written in terms
of the components of �S. Then, the problem is reduced to find the
components of �S by either imposing 6 independent strain vectors
(�e) and calculate the corresponding stresses (�r) or vice versa. To
generate such state of average strain or stress, different BCs can
be used, as discussed later in Section 2.3. Under plane-stress condi-
tions, given the in-plane directions 1–2 and the out-of-plane, 3,
�r33 ¼ �c13 ¼ �c23 ¼ 0. This leads to a constitutive relation between
in-plane stresses and strains through a reduced compliance matrix
�Sr and a reduced stiffness matrix �Q such that �Q ¼ �S�1

r . It is worth to
mention that while components of �Sr have direct correspondence
with �S, it is not the case for �Q with �C, see [14] for further details.
Thus, under plane-stress conditions, the problem is reduced to
impose three vectors of average stress or strain. However, an incon-
venience is that only the four independent constants related with
in-plane properties can be calculated, i.e. E11; E22; m12; G12.

2.2. Equilibrium, compatibility and the Hill–Mandel principle

Computational analysis of heterogeneous structures is done
through a selection of a RUC with domain V. Equilibrium of such
a RUC can be written in terms of the Cauchy stress tensor on the

microscopic scale rij and considering that it is subjected to a sur-
face traction ti with normal nj on its boundary C [15], i.e.,

rij;j þ bi ¼ 0 on V ð2aÞ

ti ¼ rijnj on C ð2bÞ

where bi are body forces, the comma means differentiation and Ein-
stein’s summation convention prevails. Moreover, for linear elastic
materials and small deformations, the macroscopic stresses (�rij)
and strains (�eij) can be expressed as averages of the corresponding
microscopic parts rij and eij, respectively as [16],

�rij ¼ 1
V

Z
V
rijdV ð3aÞ

�eij ¼ 1
V

Z
V
eijdV ð3bÞ

Considering the position vector of a point xj and symmetry of
the Cauchy stress tensor, this can be written as
rij ¼ djkrki ¼ ð@xj=@xkÞrki ¼ xj;krki, where dij is the Kronecker delta.
Thus, from Eq. (2a) we derive that in the absence of body forces,
such a tensor can also be written as rij ¼ ðrkixjÞ;k. Hence, using this
last relation with Eq. (2b) and the Gauss divergence theorem, Eq.
(3a) can be re-written as,

�rij ¼ 1
V

I
C
tixjdS ð4Þ

In Eq. (4) the contour integral is to emphasize the fact that inte-
gration is over a closed surface, S. In a similar fashion, considering
the Cauchy infinitesimal strain tensor eij ¼ 1

2 ðui;j þ uj;iÞ and with the
aid of the Gauss divergence theorem, Eq. (3b) can be written as,

�eij ¼ 1
V

I
C

1
2
ðuinj þ ujniÞdS ð5Þ

where ui are the displacements. A basic assumption in computa-
tional homogenization is based on energy equivalences, by stating
that the strain energy density in the macro level is equal to that
one on the micro level, leading to the so-called Hill–Mandel relation
[16],

�rij�eij ¼ 1
V

Z
V
rijeijdV ð6Þ

Moreover, due to the balance between strain and potential energy,
in the absence of body forces,

1
V

Z
V
rijeijdV ¼ 1

V

I
C
tiuidS ð7Þ

For convenience, the expression �rij�eij can be re-written through the
use of the Eq. (4) as,

�rij�eij ¼ 1
V

I
C
ti�eijxjdS ð8Þ

�rij�eij can also be written through the use of Eq. (5) as,

�rij�eij ¼ 1
V

I
C
ui �rijnjdS ð9Þ

Also, since �rij�eij ¼ �rij�eikdkj ¼ �rij�eikxk;j, together with the Gauss diver-
gence theorem, �rij�eij can be written as,

�rij�eij ¼ 1
V

I
C
nj�eik �rijxkdS ð10Þ

Hence, combining Eqs. (7)–(10), an alternative expression for the
Hill–Mandel principle can be obtained as,
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