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a b s t r a c t

The behavior and characteristics of classical membrane theory of isotropic materials are different from
that of anisotropic materials, care must be taken to prevent secondary bending moments due to the
unbalanced arrangement of laminates of anisotropic materials. At times, bending theory may have to
be adopted and the current design codes, such as ASME, API and ACI must be reviewed for the case of
anisotropic materials. The stresses and strains can be significantly different between the pure membrane
and bending theories.
This paper derives a membrane type shell theory of hybrid anisotropic materials, governing differential

equations together with the procedures to locate the mechanical neutral axis. The theory is derived by
first considering generalized stress strain relationship of a three dimensional anisotropic body which is
subjected to 21 compliance matrix and then non-dimensionalizing each variable with asymptotic expan-
sion. After applying to the equilibrium and stress-displacement equations, we are allowed to proceed
asymptotic integration to reach the first approximation theory. Also possible secondary moments due
to the unbalanced built up of lamination are quantifiably expressed. The theory is different from the
so called pure membrane or the semi-membrane analysis.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Shell theories used for pressure vessel design and manufactur-
ing technology are becoming more important recently as the outer
space exploration being more active. The pressure vessel ranges
from deep water submarines, space vehicles, to the dome type
human residences in the Moon or Mars.

The membrane theory of shell is simple and been existing for
generations since Trusdell and Goldenveiser have theoretically for-
mulated as shown in the Refs. [7,8].

The mechanics of composites are complicated compared to the
ordinary conventional materials such as steel and other metallic
brands but composites possess such characteristics as high
strength/density and modulus/density ratios, which will allow
flight vehicles more efficient and increased distance. The filaments
embedded in the matrix materials of composites give additional
stiffness and tensile strength. They can be arranged arbitrarily so
as to make a structure more resistant to loadings. As the mechan-
ical properties of composites vary depending on the direction of
the fiber arrangement, it is necessary to analyze them by use of
an anisotropic theory. Also the current design codes including

ASME, API and ACI, Refs. [15–18], are all based on membrane the-
ory for isotropic materials.

Pressure vessels of composite materials are, in general, con-
structed of thin layers of different thickness with different material
properties. The properties of anisotropic materials are represented
by different elastic coefficients and different cross-ply angles. The
cross-ply angle, c, is the angle between major elastic axis of the
material and reference axis (Figs. 1 and 2). The variation in proper-
ties in the direction of the thickness implies non-homogeneity of
the material and composite structures must thus be analyzed
according to theories which allow for non-homogeneous anisotro-
pic material behavior. Our task is to formulate a theory for a shell
of composite materials which are non-homogeneous and anisotro-
pic materials.

According to the exact three-dimensional theory of elasticity, a
shell element is considered as a volume element. All possible stres-
ses and strains are assumed to exist and no simplifying assump-
tions are allowed in the formulation of the theory. We therefore
allow for six stress components, six strain components and three
displacements as indicated in the following equation:

rij ¼ Cijklekl i; j ¼ 1;2;3 k; l ¼ 1;2 ð1Þ

where rij and ekl are stress and strain tensors respectively and Cijkl

are elastic moduli.
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There are thus a total of fifteen unknowns to solve for in a three
dimensional elasticity problem. On the other hand, the equilibrium
equations and strain displacement equations can be obtained for a
volume element and six generalized elasticity equations can be
used. A total of fifteen equations can thus be formulated and it is
basically possible to set up a solution for a three-dimensional elas-
ticity problem. It is however very complicated to obtain a unique
solution which satisfies both the above fifteen equations and the
associated boundary conditions. This led to the development of
various theories for structures of engineering interest. A detailed
description of classical shell theory can be found in various Ref.
[1–12].

In the first part of this article, the asymptotic expansion
and integration method is used to reduce the exact three-
dimensional elasticity theory for a non-homogeneous, anisotropic
cylindrical shell to approximate theories. The analysis is made such
that it is valid for materials which are non-homogeneous to the
extent that their mechanical properties are allowed to vary with
the thickness coordinate. The derivation of the theories is accom-
plished by first introducing the shell dimensions and as yet

unspecified characteristic length scales via changes in the indepen-
dent variables. Next, the dimensionless stresses and displacements
are expanded asymptotically by using the thinness of the shell as
the expansion parameter. A choice of characteristic length scales
is then made and corresponding to different combination of these
length scales, different sequences of systems of differential equa-
tions are obtained. Subsequent integration over the thickness and
satisfaction of the boundary conditions yields the desired equa-
tions governing the formulation of the first approximation stress
states of non-homogeneous anisotropic cylindrical shell.

2. Formulation of cylindrical shell theory of anisotropic
materials

Consider a non-homogeneous, anisotropic volume element of a
cylindrical body with longitudinal, circumferential (angular) and
radial coordinates being noted as z, h , r, respectively and subjected
to all possible stresses and strains (Fig. 1). The cylinder occupies
the space between a 6 r 6 aþ h and the edges are located at
z ¼ 0 and z ¼ L. Here, a is the inner radius, h the thickness and L
the length see Table 1.

Assuming that the deformations are sufficiently small so that
linear elasticity theory is valid, the following equations govern
the problem:

ðrsrzÞ;r þ shz;h þ ðrrzÞ;z ¼ 0
ðrsrhÞ;r þ rh;h þ ðrshzÞ;z þ shz ¼ 0
ðrrrÞ;r þ srh;h þ ðrsrzÞ;z � rh ¼ 0

ð2Þ

uz;z ¼ S11rz þ S12rh þ S13rr þ S14srh þ S15srz þ S16shz
1
r ðuh;h þ urÞ ¼ S12rz þ S22rh þ � � � þ S26shz
ur;z ¼ S13rz þ � � � þ S36shz
1
r ur;h þ uhz � 1

r uh ¼ S14rz þ � � � þ S16shz
uz;r þ ur;z ¼ S15rz þ � � � þ S36shz
uh;z þ 1

r uz;h ¼ S16rz þ � � � þ S66shz

ð3Þ

In the above Eqs. (2) are equilibrium equations and (3) stress-
displacement relations. In that ur , uh , uz are the displacement
components in the radial, circumferential and longitudinal direc-
tions, respectively, rr , rh, rz the normal stress components in the
same directions and shz, srz, srh are the shear stresses on the h-z
face, r-z face, r-h face respectively (Fig. 1). A comma indicates par-
tial differentiation with respect to the indicated coordinates. The

Fig. 1. Dimensions, deformations and stresses of the cylindrical shell.

Fig. 2. Details of the coordinate system.
Table 1
List of symbols.

List of symbols

a: Inside Radius of Cylindrical Shell
h: Total Thickness of the Shell Wall
Si: Radius of Each Layer of Wall (I = 1, 2, 3 — to the number of layer)
L: Longitudinal Length Scale to be defined, Also Actual Length of the

Cylindrical Shell
Ei: Young’s Moduli in I Direction
Gij: Shear Moduli in i-j Face
Sij: Compliance Matrix of Materials of Each Layer
r: Radial Coordinate
l: Circumferential Length Scale to be defined
Y: Angle of Fiber Orientation
r: Normal Stresses
e: Strains Normal
z, h, r: Generalized Coordinates in Longitudinal, Circumferential and

Radial Directions Respectively
s: Shear Stresses
eij: Shear Strains in i-j Face
k: Shell Thickness / Inside Radius (h/a)
Cij: Elastic Moduli in General
X, u, Y: Non Dimensional Coordinate System in Longitudinal,

Circumferential and Radial Directions Respectively
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