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a b s t r a c t

Predicting the effective thermo-mechanical response of heterogeneous materials such as composites,
using virtual testing techniques, requires imposing periodic boundary conditions on geometric domains.
However, classic methods of imposing periodic boundary conditions require identical finite element
mesh constructions on corresponding regions of geometric domains. This type of mesh construction is
infeasible for heterogeneous materials with complex architecture such as textile composites where arbi-
trary mesh constructions are commonplace. This paper discusses interpolation technique for imposing
periodic boundary conditions to arbitrary finite element mesh constructions (i.e. identical or non-
identical meshes on corresponding regions of geometric domains), for predicting the effective properties
of complex heterogeneous materials, using a through-thickness angle interlock textile composite as a test
case. Furthermore, it espouses the implementation of the proposed periodic boundary condition enforce-
ment technique in commercial finite element solvers. Benchmark virtual tests on identical and non-
identical meshes demonstrate the high fidelity of the proposed periodic boundary condition enforcement
technique, in comparison to the conventional technique of imposing periodic boundary condition and
experimental data.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Virtual tests can reduce the cost of experimental testing in the
aerospace industry by 50% [1]. Furthermore, virtual testing tech-
niques are precluded from the physical limitations of conventional
experiments such as specimen size, testing conditions etc. [2].
Thus, virtual testing is suitable for characterising the entire intrin-
sic mechanical response of composites. Nevertheless, the predic-
tive fidelity of virtual testing is determined chiefly by the
accuracy of the geometric domain, material models and imposed
boundary condition(s) (BC) [2]. In comparison with common BCs
such as Dirchlet and Neumann BCs, periodic BC is the most efficient
with respect to predictive accuracy, convergence rate and geomet-
ric domain size for virtual testing of heterogeneous materials [3,4].
However, imposing periodic BC on textile geometric domains is
arduous because the classic implementation method requires
homologous finite element meshes at the boundaries of a
geometric domain. This homologous mesh requirement is difficult
to satisfy for textile composites because of their complex
geometric topologies which yield non-homologous boundary mesh

constructions [5,6]; therefore arbitrary mesh constructions are the
norm in virtual testing of textile composites. Thus, it is desirable to
develop techniques for imposing periodic BC on arbitrary mesh
constructions amenable to textile composites.

Nevertheless, some authors have devised techniques to gener-
ate homologous mesh construction on boundary surfaces of tex-
tiles. For example, Lomov and associates [5] used meshed shell
structures to facilitate the generation of homologous meshes.
Although, this technique requires a periodic geometric structure
on boundary surfaces of the textile; thus it is inapplicable to a
majority of textile structures. Other authors [7,8] have adopted
voxel mesh construction techniques to enforce a homologous mesh
construction on boundary surfaces of textile composites. Voxel
meshing, however, introduces numerical artefacts to geometric
domains by virtue its discretisation process. These geometric arte-
facts inadvertently affect the predictive fidelity of such models.
Thus, a more robust technique of imposing periodic BC to arbitrary
conformal FE mesh constructions is necessary.

Jacques and co-workers [6] proposed a technique for imposing
periodic BC to arbitrary textile meshes. Jacques and co-workers
introduced several reference nodes in a Euclidean grid structure
which were kinematically coupled to existing nodes on corre-
sponding surfaces on the textile RVE. However, the use of Laplacian
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spatial averaging to determine the location of these reference
nodes violates the strict enforcement of spatial ‘homologousness’
between boundary surface pairs, which is a pre-requisite for PCBs.
Thus, numerical artefacts can ensue from this anomaly which may
become apparent in finite deformation regimes. Tyrus and associ-
ates [9] imposed periodic BC to arbitrary unidirectional (UD) com-
posite meshes in 2D using polynomial interpolation techniques.
The displacement fields of fibres and matrix were interpolated
using linear and cubic interpolants, respectively. Recently, Nguyen
and co-workers [4] generalised the technique of Tyrus and associ-
ates [9] and extended the formalisms to 3D cases of UD and partic-
ulate composites. The authors used Lagrange and piecewise cubic
Hermite polynomial interpolants to determine the displacement
fields along independent boundary edges. Displacement fields on
RVE surfaces were interpolated using a bi-linear Coons patch
formulation.

In this communication, we describe and implement a dual-scale
homogenisation model for predicting the entire effective elastic
properties of textile composites, using periodic BCs amenable to
arbitrary textile meshes. We extend and implement a robust vari-
ant of the periodic BC method proposed by Nguyen and co-workers
[4]. Furthermore, a method for implementing this technique in
commercial FE solvers using conventional MPC equations is delin-
eated, using ABAQUS’s FE solver as a case study. Section 2 recalls
the essentials of downscaling and describes the proposed periodic
BC technique amenable to arbitrary meshes. Section 3 describes a
method for its FE implementation in commercial FE solvers. In
Section 5, the proposed periodic BC method is validated. Lastly,
Section 6 describes the adopted virtual testing technique used to
determine the entire effective elastic properties of textile
composites.

2. Periodic boundary condition (PBC)

Consider a macroscopic continuum volume, Xcontinuum, subjected
to an arbitrary loading configuration as shown in Fig. 1.

Furthermore it is assumed that a local RVE volume, XRVE, with
boundary, @XRVE, is sufficiently resolved at a randomly sampled
macroscopic material point, X 2 Xcontinuum. In order to impose PBC
on XRVE in RN , where N is the dimensionality of the RVE’s solution
space, N; @XRVE must consist of at least N pairs of faces. This is
achieved by decomposing the entire boundary into two distinct
parts: a positive part, @Xþ

RVE, and a negative part, @X�
RVE. Each corre-

sponding pair of @Xþ
RVE and @X�

RVE have material points xþ and x�,
respectively, such that, xþ 2 @Xþ

RVE and x� 2 @X�
RVE. These have unit

outward normals, nþ ¼ �n�, respectively. Thus, the following rela-
tionship is satisfied

@Xþ
RVE [ @X�

RVE ¼ @XRVE ð1Þ
Periodic BC is imposed on @XRVE with the foregoing characteris-

tics by enforcing periodicity of boundary fluctuation fields, ~u, and
anti-periodicity of boundary traction fields, t, such that

ð8xþ 2 @Xþ
RVE and x� 2 @X�

RVEÞ ~uðxþÞ ¼ ~uðx�Þ ð2Þ

ð8xþ 2 @Xþ
RVE and x� 2 @X�

RVEÞ tðxþÞ ¼ �tðx�Þ ð3Þ
In practice two different types of FE mesh construction exists: a

homologous mesh construction and a non-homologous mesh con-
struction. Homologous FE meshes satisfy specific conditions such
that

#@Xþ
RVE ¼ #@X�

RVE ð4Þ
and

ð8xþ 2 @Xþ
RVE and homologous x� 2 @X�

RVEÞ nþ � n� ¼ 0 ð5Þ
where # represents the cardinality of a set. Imposing PBC on
homologous meshes is achieved by enforcing only Eq. (2) using
classic methods that kinematically tie homologous boundary node
pairs [3]. This kinematic tying is achieved using multi-point con-
straint equations [10]. Conversely, non-homologous FE meshes sat-
isfy specific conditions such that

#@Xþ
RVE ¼? #@X�

RVE ð6aÞ
and

9xþ 2 @Xþ
RVE and x� 2 @X�

RVE

� �
nþ � n� – 0 ð6bÞ

The conditions described by Eq. (6b) are illustrated in Fig. 2. In
these cases, the classic kinematic tying of node pairs is unsuitable;
therefore, more robust methods such as that proposed herein
should be utilised.

2.1. Imposing PBC on arbitrary FE meshes

The underlying premise of the proposed periodic BC technique
hinges on the proposition that the displacement field of @XRVE

can be interpolated. Interpolation functions, DðsÞ, are adopted such
that Eq. (2) is satisfied. To this end, the following conditions are
evoked to interpolate the displacement fields of the negative and
positive parts of @XRVE, respectively

uðsÞ� ¼ DðsÞ ¼
Xn

k¼1

NkðsÞak ; ð7Þ

and

uðsÞþ ¼ DðsÞ þ eðxþ � x�Þ; ð8Þ
where NkðsÞ for k 2 fk ¼ 1;2; . . . ; ng are shape functionswhich solely
depend on spatial variable(s), s;ak represents independent variables,
e is the strain tensor imposed at the continuum scale, and ðxþ � x�Þ
depends of the RVE’s dimensions. Therefore the displacement field
of @XRVE, is determined from the independent variables ak and the
applied far-field continuum scale strain e. The independent vari-
ables are selected as DOFs of specific nodes located at @X�

RVE: these
nodes are herein called independent nodes.

Fig. 1. Schematic of isolation of an RVE domain, XRVE, from an arbitrarily loaded macroscopic domain, Xcontinuum.
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