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a b s t r a c t

This paper presents a novel numerical tool for the bending analysis of thin and thick composite plates,
including monolithic and sandwich structures. The formulation is developed within a displacement-
based approach, where the Principle of Virtual Displacements (PVD) and the method of Ritz are adopted
to derive the governing equations. The approach relies upon the Sublaminate Generalized Unified
Formulation (S-GUF) as underlying kinematic theory describing the behavior across the plate thickness.
Main idea of the S-GUF is to group the plies into a number of smaller units called sublaminates, each of
them characterized by an independent, variable-kinematic theory. Continuity conditions between the
sublaminates are enforced in strong form during the assembly procedure of the governing equations.
The S-GUF appears particularly useful when theories of different order are needed to approximate the
displacement field of different portions of the structure, such as in the case of sandwich panels. A number
of test cases from the literature is discussed, and results are validated against exact 3D solutions. The
results demonstrate the ability of the approach to obtain accurate results, both in terms of deformed
shapes, and intra- and inter-laminar stress distributions. A set of novel results is also presented for future
benchmarking purposes.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to accurately predict complex stress distributions,
both in terms of normal and transverse stress components, is a
crucial aspect to assist the design of modern composite structures.
Particularly relevant is the development of analysis tools that can
efficiently combine the accuracy of the predictions with a reason-
able computational effort, so that the effect of different stacking
sequences, material properties or structural configurations, can
be assessed since the preliminary design steps.

Several modeling strategies have been developed in the years,
including Equivalent Single Layer (ESL) and Layer-Wise (LW) theo-
ries [1]. In ESL models, the displacement field is approximated
starting from the description of one single reference surface; the
number of degrees of freedom is thus independent of the number
of layers. However, the in-plane displacement components are
approximated with functions that are, at least, C1 continuous along
the thickness, which can be unable to capture the kinematics
between layers with drastically different mechanical properties.

One approach aiming at overcoming this restriction consists in
the adoption of Zig-Zag functions, whose idea is to enrich the kine-
matics of ESL models by means of shape functions with discontin-
uous slope at the interface between layers. A comprehensive
review of Zig-Zag theories, which is not the subject of the present
work, is provided in [2].

Layerwise models are another class of theories directed toward
the possibility of capturing complex responses along the through-
the-thickness direction. In this case, the displacement field is C0

continuous along the thickness direction and is described with
independent degrees of freedom for each of the plies composing
the laminate. It follows that abrupt changes of strains between
the layers can be properly detected. However, the number of
theory-related degrees of freedom can be high, in particular for
multilayered structures composed of a large number of plies.

Observing that the most important variations of elastic proper-
ties are generally confined to a subset of layer interfaces – for
instance, between the core and the facesheet in the case of a
sandwich – an effective idea is to group the plies into smaller sets,
sometimes denoted as sublaminates, sharing the same kinematic
description. An example is found in [3], where sandwich
beams are analyzed using beam theory for the skins and a
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two-dimensional elasticity theory for the core. Refined plate and
beam theories where the laminate is represented as an assemblage
of sublaminates are discussed in [4–6]. In these formulations, first-
order zig-zag kinematics are postulated within each sublaminate.
It follows that the in-plane displacement components vary in a
piecewise fashion along the thickness, while the normal displace-
ment component varies linearly. The extension to high-order
zig-zag kinematics is discussed in [7]. Another approach based
on the sublaminate description is found in [8,9], where the dis-
placement field is expanded with a third-order theory, and shear
warping and shear coupling functions are used to ensure continu-
ity of in-plane displacements, inter-laminar shear stresses and
transverse normal stresses. An idealization of the sandwich into
three sublaminates, each of them modeled with FSDT, is proposed
in Ref. [10] with regard to the finite element implementation.

While the idea of sublaminate has been adopted by several
authors, the formulations in the literature are commonly devel-
oped for specific kinematic theories. A theoretical framework that
employs a general sublaminate approach in conjunction with gen-
eral kinematics assumptions has been presented in [11], where a
strong form analysis of the governing equations has been
employed. The development of a sublaminate model in the context
of a variationally consistent variable-kinematic approach has been
recently performed by one of the authors [12]: the sublaminate
description is coupled with a variable-kinematic theory expressed
in a unified formulation, and the governing equations are obtained
through the use of displacement-based or mixed variational state-
ments. A vast amount of literature is available regarding unified
theories [13,14] and their implementation in the context of numer-
ical procedures based on the finite element method [15–19], radial
basis functions [20], quadrature techniques [21,22] and Ritz
method [23–25], or of exact solutions based on Navier [26–28]
and Levy methods [29–31]. The original idea of unified formulation
– due to Carrera and often referred to as CUF (Carrera’s Unified For-
mulation) –, offers the advantage of providing a systematic
approach for developing formulations based on ESL and LW theo-
ries, of various order, in the context of the same framework. An
interesting extension of CUF is due to Demasi [32–37] and is rep-
resented by the so-called Generalized Unified Formulation (GUF),
the main distinction with CUF being the possibility of expanding
each displacement field component by means of different theories
and different orders. In the work of Ref. [12], the subdivision of the
laminate into sublaminates has been proposed in conjunction with
GUF thus leading to the Sublaminate-GUF (S-GUF) approach, and
benchmark results are derived from the Navier solutions of the
strong-form governing equations. In the present paper, the imple-
mentation of the S-GUF approach is discussed in the context of a
displacement-based formulation, where the Ritz method is
employed as solution technique. The main advantage of the Ritz
approach consists in permitting the analysis of any combination
of boundary conditions. Furthermore, no restrictions on the stack-
ing sequences exist, so that realistic configurations characterized
by the presence of membrane and/or flexural anisotropy can be
accounted for. An overview of the S-GUF theoretical framework
is provided in Section 2, while a description of the approximate
solution approach based on the method of Ritz, together with the
assembly and the expansion of the governing equations, is dis-
cussed in Section 3. A comprehensive set of test cases is discussed
in Section 4, where results from literature are taken for validation
purposes and novel benchmark results proposed.

2. The Sublaminate Generalized Unified Formulation

The formulation here presented provides a unified and versatile
framework capable of generating multiple-kinematic models of

increasing complexity (from classical FSDT models to higher-
order full LW models) such that the desired balance of accuracy
and computational cost can be obtained for the solution of a wide
range of multilayered plate problems. This goal is achieved through
the concept of selective ply grouping, or sublaminate, and the
variable-kinematic capabilities of the generalized unified formula-
tion (GUF) [32,33]. For this reason, the theoretical framework here
proposed will be denoted as Sublaminate Generalized Unified
Formulation (S-GUF). The fundamental element of S-GUF is the sub-
laminate, which is defined as a specific group of adjacent material
plies with a specific 2D kinematic description, i.e., the theory
adopted to approximate the displacement field across the thickness
of the sublaminate. Accordingly, each sublaminate is associated
with the following parameters: the number of plies of the sublam-
inate, the first and last ply constituting the sublaminate, and the
local kinematic description, i.e. the Equivalent Single Layer (ESL)
or Layerwise (LW) model to approximate the displacement field
within the sublaminate. It is important to remark that plate
descriptions combining both ESL and LW theories can be accounted
for. For instance, a group of plies belonging to a sublaminate could
be represented with a ESL description, while those belonging to
another sublaminate could be modeled in a LW manner. Similarly,
the order of the theory can be chosen independently from sublam-
inate to sublaminate. One example could be represented by a sand-
wich panel, whose facesheets are modeled with a low-order ESL
theory, while a higher-order theory is adopted for the core. When
the laminate is modeled by using one single sublaminate, the
classical ESL and LW models are directly recovered.

2.1. Geometric description

The idealization of the multilayered structure as an assembly of
perfectly bonded physical plies and mathematical sublaminates is
illustrated in Fig. 1. As seen, the laminate is composed of Np plies of
homogeneous, orthotropic material, that are numbered from the
bottom to the top of the panel. The thickness of each single ply is
denoted as hp, so that the total thickness of the laminate is

h ¼ PNp
p¼1hp. Following the S-GUF approach, the laminate is

subdivided into k ¼ 1;2; . . . ;Nk sublaminates, numbered from the
bottom to the top, each of them characterized by thickness hk.

The number of plies of the kth sublaminate is denoted as Nk
p,

thus
PNk

k¼1N
k
p ¼ Np. A local numbering of plies p ¼ 1; . . . ;Nk

p is also
introduced at sublaminate level (see Fig. 2), where the first ply of

the sublaminate is p ¼ 1, and the last ply is Nk
p. Accordingly, all

the relevant quantities belonging to ply p of sublaminate k will

be, hereinafter, explicitly indicated with the superscript ðÞp;k.
Note that z 2 ½�h=2; h=2� defines the global thickness coordi-

nate, whereas zp 2 ½�hp=2;hp=2� and zk 2 ½�hk=2;hk=2� are the local
ply and sublaminate coordinates, respectively. Corresponding
nondimensional coordinates are introduced as

fp ¼
zp

hp=2
and fk ¼

zk
hk=2

ð1Þ

and are linked through the following relation:

fp ¼
hk

hp
fk þ

2
hp

z0k � z0p
� � ð2Þ

where z0p and z0k are the midplane coordinates of the pth ply and
kth laminate, respectively.

2.2. Kinematic approximation at sublaminate level

In the context of the S-GUF formulation, each sublaminate is
associated with a specific kinematic assumption that is defined
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