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a b s t r a c t

This study focuses on the geotechnical engineering structures with implicit or unknown expressions of
performance functions. A one-dimensional integral approach (ODIA) consisting of sampling, evaluation
of statistical moments for multivariable functions, probability density function fitting, and simple inte-
gration of failure probability was developed through system integration. A convergence study of an illus-
trative example was conducted, and the error analysis revealed that the accuracy of ODIA is equivalent to
that of the second-order reliability method. Applications of ODIA to a slope and surrounding rock of an
excavation were presented to further confirm the accuracy, efficiency, and practicability of the approach.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the stability analysis and design of geotechnical engineering
structures, the probability of failure is increasingly evaluated [1–4]
to rationally consider unavoidable uncertainties in the mechanical
properties of different types of geomaterials, geometric shapes of
engineering structures, etc.

Assume that a random vector X ¼ ðX1;X2; . . . ;XnÞ involves n
stochastic variables for a geotechnical engineering structure,
whose corresponding performance function is Z ¼ gðXÞ. According
to the original concept of reliability, an accurate solution to failure
probability can be calculated using one of the following integrals:

Pf ¼ P½gðXÞ 6 0� ¼
Z
X
f XðxÞdx; ð1Þ

Pf ¼ P½Z 6 0� ¼
Z
X�

f ZðzÞdz; ð2Þ

where Pf is the failure probability of the structure, f XðxÞ is the joint
probability density function (JPDF) of X, and X is its integral range,
which satisfies gðXÞ 6 0, f ZðzÞ is the probability density function
(PDF) of the random quantity Z, and X� is its integral range, which
satisfies Z 6 0.

Eq. (1) has substantially received more attention than Eq. (2) for
a long time. However, for common engineering structures, a speci-
fic expression of f XðxÞ is unavailable. Moreover, even though f XðxÞ
exists, it is often burdensome to calculate the multidimensional
integral immediately. That is, it is usually difficult to calculate Pf

immediately by using the right side of Eq. (1). To overcome this dif-
ficulty, various approximation methods have been developed. Thus
far, the methods may be generally divided into three types. The
first type is direct simulation, which includes the Monte Carlo sim-
ulation (MCS) method [5,6] and its various improved editions [7,8].
This method requires thousands of calculations of the performance
function and is often used to verify the accuracy level of a new
approach [9]. The second type is the statistical moment method,
mainly the first-order reliability method (FORM) [10–12] and the
second-order reliability method (SORM) [13,14]. The third type is
the combination of the above two methods such as the updated
FORM and SORM, which are obtained by integrating the original
FORM and SORM with importance sampling method [15,16].

Among these three methods, the statistical moment method has
been widely used because of its concise operational process and
acceptable accuracy. However, because the gradient vector of the
performance function is calculated using the Newton–Leibniz for-
mula in the statistical moment method, the explicit expression of
gðXÞ must be available. However, for most geotechnical engineer-
ing structures, especially for slopes and surrounding rocks of tun-
nels, the expressions of gðXÞ may be implicit or unknown. Under
these circumstances, to calculate the gradient vector, scholars have
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developed various approximation methods. These methods can
generally be divided into two types.

First is the response surface method (RSM) that constructs a
substitute for gðXÞ. In the early 1990s [17], a quadratic polynomial
was used as the surrogate for gðXÞ in the RSM. Subsequently,
numerous improved practices were attempted. For example,
Proppe [18] developed an adaptive local approximation scheme;
Tan et al. [19] proposed some surrogate approaches based on radial
basis function networks and support vector machines; Zhang et al.
[20] suggested a fitting method based on the kriging model; Cheng
et al. [21] introduced a substitute means based on an artificial neu-
ral network. In addition, the RSM was applied in the reliability
analysis of tunnel engineering [22,23]. However, Proppe [18] and
Guan et al. [24] noted that the high quality of the substitute in
the RSM (including the classic RSM and the improved RSM) could
not be guaranteed theoretically.

The second approximation method calculates the gradient vec-
tor by using the finite difference technique such as the recursive
algorithm FORM approach expanding the practicability of the
FORM [25,26]. However, the accuracy of the gradient is closely
associated with the selected value of the step length coefficient.
Herein, the determination of a value satisfying the accurate
requirement is a difficult problem, which is still not completely
solved. Moreover, the algorithm underlying the approach is still
the Hasofer–Lind–Rackwits–Fiessler (HLRF). Under certain condi-
tions, the convergence rate of the algorithm may be unacceptably
slow, and it may even diverge and need to resort to some abstruse
optimization theories [27–29].

The aforementioned researches mainly focused on how to cater
the requirements of the statistical moment methods. Unlike the
above practices, aiming at the reliability problem in geotechnical
engineering structures, whose expressions of performance func-
tions are implicit or unknown, there are two objectives in the
study. The first is to develop a reliability analysis approach that
does not require the calculation of gradient vector. The second is
to make the approach appealing and practical for geotechnical
practitioners. Therefore, starting from the concept implied in Eq.
(2), an evaluation tool of statistical moments for random quantity
and a technique to conjecture its PDF were developed. Subse-
quently, on the basis of hybridizing the tool with the technique,
a practical approach, namely one-dimensional integral approach
(ODIA), to calculating probability of failure by a simple integral
was developed. ODIA is simple enough for geotechnical practition-
ers to understand and implement.

The subsequent sections of the paper are structured as follows.
First, the proposed ODIA and the corresponding operation proce-
dure are described in detail in Section 2. In Section 3, a numerical
example is illustrated in detail, and comparison and convergence
studies are presented to validate the proposed approach. The appli-
cations of the proposed approach to geotechnical engineering
structures are demonstrated in Section 4. Section 5 provides the
conclusions of this study.

2. The proposed approach

2.1. Transformation and sampling

For stochastic properties of X and its component Xi

(i ¼ 1;2; . . . ;n), a correlation coefficient matrix q ¼ ðqijÞn�n

(i; j ¼ 1;2; . . . ;n) of X, a mean value lXi of Xi, a standard deviation
rXi, a marginal PDF f iðxiÞ, and a marginal cumulative distribution
function (CDF) FiðxiÞ are available. On the basis of these statistical
data of X and according to the principle of equal probability, the
following marginal transformation [30] may be used to map X into
a standard normal vector Y ¼ ðY1;Y2; . . . ; YnÞ.

FiðxiÞ ¼ UðyiÞ; ð3Þ

yi ¼ U�1ðFiðxiÞÞ: ð4Þ
After mapping X into the standard normal vector Y, the correla-

tion coefficient matrix, q0 ¼ ðq0ijÞn�n
, (i; j ¼ 1;2; . . . ;n) of Y is differ-

ent from q. According to the classical Nataf transformation theory
[31,32], the following relationship holds between q0ij and qij:

qij ¼
Z þ1

�1

Z þ1

�1
ððF�1

i ðUðyiÞ � lXiÞÞ=rXiÞððF�1
j ðUðyjÞ

� lXjÞÞ=rXjÞ/2ðyi; yj;q0ijÞdyidyj; ð5Þ
where Uð�Þ is a CDF and /2ðyi; yj;q0ijÞ is a joint PDF for yi and yj.

For convenience, an excellent approximate approach proposed
by Der Kiureghian and Liu [32] is used to avoid the above compli-
cation. Let Rij be the ratio of q0ij to qij, i.e.,

Rij ¼ q0ij=qij: ð6Þ
As testified by Der Kiureghian and Liu [32], Rij is a function of

mXi
, mXj

, and qij, i.e.,

Rij ¼ f ðvXi
;vXj

;qijÞ; ð7Þ
where mXi

and mXj
are the coefficients of variation (CV) of Xi and Xj,

respectively. The specific expression for the right side of Eq. (7) is
associated with the distribution types of Xi and Xj, and various
expressions for different distribution types are well documented
by Der Kiureghian and Liu [32] and Ditleven and Madsen [30]. Fur-
thermore, Der Kiureghian and Liu [32] verified that the relative
errors between results calculated by Eq. (7) and the corresponding
exact values are less than 4%.

Thus, q0 is available with each component of q0ij determined by
Eqs. (6) and (7). As a symmetric matrix, q0 can be split into a lower
triangular matrix C and its transpose CT by the Cholesky factoriza-
tion, namely,

q0 ¼ CCT: ð8Þ
Subsequently, by using the inverse C�1, Y can be mapped into a

mutually independent standard normal vector U ¼ ðU1;U2; . . . ;UnÞ
from Eq. (9) provided below:

UT ¼ C�1YT: ð9Þ
Moreover, C�1 can also be expressed by its rows as follows:

C�1 ¼ ðC0
1 C0

2 � � �C0
nÞT; ð10Þ

where C0
i ¼ ð~Ci1

~Ci2 � � � ~CinÞ and ~Cijði; j ¼ 1;2; . . . ;nÞis a component
of U. Assuming that x ¼ ðx1; x2; . . . ; xnÞ is a realization of X and com-
bining Eq. (4) with Eq. (9), each component ui of u (a realization of
U) corresponding to x can be obtained as follows:

ui ¼ C0
iðU�1ðF1ðx1ÞÞ; . . . ;U�1ðFnðxnÞÞÞT: ð11Þ

Thus far, the transformation from X to U is established
completely.

From Eq. (9), the following transformation may be given:

YT ¼ CUT: ð12Þ
Simultaneously, C can also be expressed by its rows as follows:

C ¼ ðC00
1 C00

2 � � �C00
nÞT; ð13Þ

where C00
l ¼ ðCl1 Cl2 � � �ClnÞ and Clmðl;m ¼ 1;2; . . . ;nÞ is a compo-

nent of C. Assuming that u ¼ ðu1; u2; . . . ;unÞ is a realization of U
and from Eqs. (3) and (12), each component xi of x (a realization
of X) corresponding to u can be calculated as follows:
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