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a b s t r a c t

Constitutive models for soft soils require a large number of parameters to model the complex material
response. One set of parameters should capture the soil response for various laboratory & in situ stress
paths. This requires a new method to calibrate a consistent set of model parameters using test data from
different load paths of classic geomechanical tests. The feasibility of the proposed method is demon-
strated with the recently developed CREEP-SCLAY1S model. After a sensitivity analysis that highlights
the model parameters for optimisation, an optimisation process for two different configurations is
designed. The latter is successfully verified against artificially generated laboratory data.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Soft clays are very complex materials. Advanced models taking
into account anisotropy, time/rate dependency, bonding/destruc-
turation and non-linear elasticity are required to correctly describe
and predict their mechanical behaviour. An unfortunate side effect
is that these advanced models require a large number of parame-
ters. Generally, in such models, most of these parameters are
directly assessed from a single type of laboratory test, but some
cannot be measured experimentally. It is then necessary to esti-
mate these parameters through indirect methods such as calibra-
tion [1].

Automatic methods for model calibration are essential in order
to identify model parameters independently of the user. Often
these methods are based on the inverse problem theory by [2]. It
consists of finding the best set of parameters which minimises
the distance between experimental results and model results.
Numerous methods for inverse analysis for geotechnical problems
have been carried out with gradient methods [3–6], neural net-
work based techniques [7,8], genetic algorithms [9,10] and particle
swarm optimisation [11–13].

Generally, the parameter identification techniques based on
inverse analysis remain unsatisfactory because they do not suffi-

ciently take into account the non-uniqueness of the inverse analy-
sis problems. This difficulty can be overcome by determining a set
of satisfactory solutions (multi-objective optimisation process) or
the use of several test types with different load paths [14]. The dif-
ficulty to obtain the uniqueness of the solution is increasing with
the number of parameters to optimise. Practically, it is not feasible
to obtain all parameter values for complex models with many
parameters. There is then a need to choose the proper parameters
for optimisation. Principally, the optimisation parameters are only
the parameters which are not measurable experimentally. How-
ever, even the parameters that are directly derived from experi-
mental data have some measurement uncertainties which will
affect the final output.

In this article, the uniqueness of the solution is studied using
artificial data. The optimisation method uses a genetic algorithm
combined with selected relevant test paths to obtain reliable
model parameter solutions. In order to choose the parameters for
optimisation, a sensitivity analysis was performed for different test
paths with a different set of model parameters and initial condi-
tions. From the sensitivity analysis, the most important parame-
ters, which need to be optimised, are identified.

2. Software framework

An overview of the principle work flow of the software tool is
shown in Fig. 1. Three important stages are highlighted in grey.
Two of those, i.e. the sensitivity analysis and optimisation of
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parameters, are implemented as two modules in the tool. In con-
trast the third, the selection of the parameter bounds, is limited
by the model formulation and potential measurement errors and
requires further user input as is elaborated in [15].

The software tool is in fact a graphical user interface (GUI)
wrapped around an incremental driver, developed by [16,17],
using the Python PyQt library. The incremental driver enables
probing the constitutive model on a single integration point level
for arbitrary stress and strain paths and is compatible with the syn-
tax of the user-defined material subroutine of ABAQUS, i.e. UMAT.
The implementation is universal where the Python code calls the
incremental driver, which is a standalone executable, see Fig. 2.
In principle any constitutive model implemented as a UMAT
library can be linked to the incremental driver, and hence the

Python wrapper. Furthermore, this enables straightforward expan-
sion towards parallelisation with multiple threads, each one calling
an incremental driver. In the current implementation the number
of loading paths that can be evaluated is limited by the available
test data rather than computational limitations.

The Python GUI allows for easy access to additional libraries for
sensitivity analyses and model optimisation. The sensitivity
analysis tool to study the importance and sensitivity of parameters
of the constitutive model in the strain driver is implemented
using the Sensitivity Analysis Library, the SALib package [18].
The optimisation tool, to optimise model parameters against
experimental data, has been implemented via the Distributed
Evolutionary Algorithms in Python, DEAP, library [19]. Both tools
may be used for one loading path or multiple loading paths.

Fig. 2. Communication between the Graphical User Interface (GUI) wrapper script and the incremental driver.

Fig. 1. Flow chart of the optimisation method.
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