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a b s t r a c t

This contribution considers the critical time increment (Dtcrit) to achieve stable simulations using partic-
ulate discrete element method (DEM) codes that adopt a Verlet-type time integration scheme. TheDtcrit is
determined by considering the maximum vibration frequency of the system. Based on a series of para-
metric studies, Dtcrit is shown to depend on the particle mass (m), the maximum contact stiffness
(Kmax), and the maximum particle coordination number (CN,max). Empirical expressions relating Dtcrit to
m, Kmax, and CN,max are presented; while strictly only valid within the range of simulation scenarios con-
sidered here, these can inform DEM analysts selecting appropriate Dtcrit values.
� 2017 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Particulate discrete element modelling (DEM) is well estab-
lished as a research tool in science in general, and in geomechanics
in particular; there has been a consistent increase in the number of
DEM-related publications published each year over the past
20–25 years [1,2]. Understandably the emphasis in DEM-related
publications has been on application of DEM to simulate physical
systems [3], and associated developmental work focussing on
implementation of contact models (e.g. [4]), simulating particle
crushing, boundary conditions, etc. As is the case with any numer-
ical method, such application orientated research should be sup-
ported by studies that examine the method itself, considering
issues relating to accuracy (e.g. [5]) and numerical stability (e.g.
[6,7]). This contribution specifically considers the issue of numeri-
cal stability, and applies eigenmode analyses to a database of DEM
simulations to show how the particle characteristics, packing and
stress level influence the critical time increment calculated from
consideration of the maximum eigenfrequency. The paper includes
a background section that discusses the issue of numerical stability
in particulate DEM prior to introducing the analysis approach
adopted. The results of the eigenmode analysis are then presented
and followed by an overall synthesis that considers the effect of
packing density, particle size distribution, particle inertia, coordi-
nation number and contact stiffness on the critical time increment.

2. Background

As outlined by Hanley and O’Sullivan [5] the second order
velocity-Verlet integration scheme has been adopted in a number
of DEM codes that are used in geomechanics applications including
LAMMPS [8], LIGGHTS [9] and YADE [10] and the commercial codes
PFC2D/3D use a related Verlet-based scheme [11]. This numerical
method is conditionally stable, i.e. it is only when the time incre-
ment used is less than a threshold value (the critical time step,
Dtcrit) that small perturbations in the initial data will give small
changes in the final solution (e.g. [12]). Two approaches are used
in the literature to determine Dtcrit for DEM simulations; the first
is based on the oscillation period of a single degree of freedom sys-
tem, while the second uses the Rayleigh wave speed.

In their initial description of the discrete element method Cun-
dall and Strack [13] estimated Dtcrit by considering a single degree
of freedom system of a massm connected to the ground by a spring
K, giving:

Dtcrit;SDOF ¼ 2
ffiffiffiffiffiffiffiffiffiffi
m=K

p
ð1Þ

Developing this idea, Hart et al. [14] suggest:

Dtcrit;Hart ¼ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mmin

2Kmax

r
ð2Þ

where mmin is the minimum mass and Kmax is the largest normal or
tangential contact stiffness, a is a user specified parameter that
accounts for the presence of multiple contacts for each mass; Hart

et al. recommend a = 0.1, i.e. Dtcrit;Hart ¼ 0:14
ffiffiffiffiffiffiffiffi
mmin
Kmax

q
. Using these ideas

and following a parametric study on monodisperse samples, Tsuji
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et al. [15] adopted Dtcrit;Tsuji ¼ p
5

ffiffiffi
m
K

p ¼ 0:63
ffiffiffi
m
K

p
. Simple DEM models

use linear contact models where a constant spring stiffness is
applied to all contacts and K is constant, however many researchers
use a Hertzian contact model that uses a non-linear force-
deformation relationship at the contacts to account for the variation
in contact area with contact force. Referring to Johnson [16], in the
contact normal direction the incremental (i.e. tangent) contact
spring stiffness (KN,Hertz) is then

KN;Hertz ¼ G
ffiffiffiffiffiffi
2~R

p
ð1� mÞ

ffiffiffi
d

p
ð3Þ

where G is the particle shear stiffness, m is the particle Poisson’s
ratio, d is the contact overlap and ~R ¼ 2R1R2

R1þR2
, R1 and R2 being the radii

of the two contacting particles. The dependency on d means there
will be a range of spring stiffnesses in a DEM model at any given
time and KN,max will vary during a simulation. This complicates
application of Eq. (1). Jensen et al. [17] report a modified version
of Eq. (1) that is considered in the LS-DYNA DEM code:

Dtcrit;Cundall ¼ 0:2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mmin
E

3ð1þ2mÞb

s
ð4Þ

where E is the particle Young’s modulus and b is a stiffness penalty
parameter that is typically between 0.1 and 0.001. Tu and Andrade
[18] argue that Dtcrit associated with rotational motion is critical
and so

Dtcrit;Tu ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mmin

5KT

s
¼ 1:2

ffiffiffiffiffiffiffiffiffiffi
mmin

KT

r
ð5Þ

where KT is the tangential spring stiffness.
In the PFC codes [19] a critical time step is found for each body

by considering both rotational and translational motion to be
uncoupled and calculating the ratios

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ktran

p
and

ffiffiffiffiffiffiffiffiffiffiffi
I=krot

p
where

m and I are the mass and moment of inertia respectively. The
translational and rotational stiffnesses (ktran and krot) are deter-
mined by considering the diagonal terms of the contact stiffness
matrix at each contact and then summing the contributions from
all the contacts assuming the degrees of freedom to be uncoupled.
The final critical time step is taken to be the minimum of all the
ratios

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ktran

p
and

ffiffiffiffiffiffiffiffiffiffiffi
I=krot

p
computed for all degrees of freedom

of all bodies. As individual contacts are considered this approach
can be applied to Hertzian contacts. Referring to Serra et al. [20],
who use a similar approach, this type of implementation is based
on Gerschgorin’s theorem as outlined by Underwood [21].

Where a Hertizan contact model is used, a number of authors
argue that estimates of Dtcrit based on Eq. (1) are not valid. For
example Boac et al. [22] and Li et al. [23] argue that this approach
is inapplicable because the contact model is non-linear. Thornton
[24] cited [25] to suggest that the Rayleigh wave speed determines
the time step. Li et al. [23] give the following expression for the
Rayleigh time step (TR) (also cited in [17,22,26]):

TR ¼
pR

ffiffiffi
q
G

q
0:1631mþ 0:8766

ð6Þ

where q is the particle density. Li et al. and Boac et al. [22] specify
that R is the average particle radius (Rave); when the same expres-
sion is given by Kremmer and Favier [27] and Kafui et al. [28], R
is taken to be the minimum particle radius (Rmin). Li et al. [23] jus-
tify this approach for estimating the critical time increment by
arguing that it can be assumed that all of the energy in the system
is transferred by Rayleigh waves, while Guo et al. [29] explain that
this approach considers the time taken for a Rayleigh wave to pass a
sphere in a single time increment.

As noted by Burns and Hanley [7] it is clear that application of
these different approaches will give different time step values.
Whichever approach is used it seems that users view the calcu-
lated Dtcrit values to be an estimate. As already stated Hart et al.
[14] and Tsuji et al. [15] use experience/empirical considerations
to apply a factor to Eq. (1). Boac et al. [30] state that in practice
some fraction of TR is used, and suggest this fraction should be
0.2–0.4, with the higher number being more suited to lower coor-
dination numbers. Jensen et al. [17] state that for stability the min-
imum of the critical time increment calculated using TR, and Eq. (4)
should be multiplied by a factor of 0.2 (they also consider a third
approach that takes particle velocity into account). Itasca [19]
apply a default factor of 0.8 to their calculated Dtcrit and this factor
can also be user-specified.

Note that while Thornton [24] also considered artificially
increasing the particle density (density scaling) to increase the crit-
ical time step, this has consequences for the inertial number and
the maximum strain rate that can be applied while maintaining
quasi static conditions [31,32] and so density scaling is neither
used nor recommended here.

3. Eigenvalue analysis

Stability of explicit time integration approaches applied to
multi-degree of freedom systems is also a concern in dynamic
finite element analysis. Belytschko et al. [12] state that for a system
of constant strain elements

Dtcrit;CS ¼ 2
xmax

6 min
ele

2
xele

¼ min
ele

lele
cele

ð7Þ

where xmax is the maximum frequency of the linearized system,
xele is the frequency of element ele, lele is a characteristic length
of element ele and cele is the current wave speed in element ele.
Eq. (7) clearly links to the approaches used to determine Dtcrit;
DEM analysts are implicitly relating the ratio

ffiffiffiffiffiffiffiffiffiffi
m=K

p
to xele, while

consideration of the Rayleigh wave speed relates to the ratio lele
cele
.

There is however a basic conceptual difference in the two
approaches; the Cundall/Hart SDOF-based approach considers the
system to be comprised of rigid bodies connected by springs, while
the Rayleigh-wave-based approach considers the particles them-
selves to be elastic.

O’Sullivan and Bray [6] argued that the particles in a DEM sim-
ulation are analogous to the nodes in a finite element model, while
the contacts are roughly equivalent to the elements. This concep-
tual model of a granular material is used in implicit discrete ele-
ment method formulations such as the particulate form of
discontinuous deformation analysis (DDA) as outlined in [11].
O’Sullivan and Bray [6] outlined that if it is assumed that linear sta-
bility analysis also holds for non-linear cases, then the maximum
stable time increment (Dtcrit) is a function of the eigenvalues of
the current stiffness matrix (e.g. [36,37]). As acknowledged by Tu
and Andrade [18], the maximum frequency, xmax, is related to
the maximum eigenvalue (kmax) of the M�1K matrix as

xmax ¼
ffiffiffiffiffiffiffiffiffi
kmax

p
ð8Þ

O’Sullivan and Bray estimated the maximum eigenvalue of the
system using the following expression which is an extension of
Rayleigh’s theorem ([36]):

kmax 6 kelemax ð9Þ

where kelemax is the maximum eigenvalue of the Mele�1Kele matrix for
element ‘‘ele”, (Mele = element mass matrix, Kele = element stiffness
matrix). An estimate for the critical time increment can then be
made by applying Eq. (7), once kelemax is known, and O’Sullivan and

68 M. Otsubo et al. / Computers and Geotechnics 86 (2017) 67–79



Download English Version:

https://daneshyari.com/en/article/6479924

Download Persian Version:

https://daneshyari.com/article/6479924

Daneshyari.com

https://daneshyari.com/en/article/6479924
https://daneshyari.com/article/6479924
https://daneshyari.com

