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a b s t r a c t

This paper presents a new approach for the development of an elastoplastic constitutive model to predict
the strength and deformation behaviour of soils under general stress conditions. The proposed approach
was based on characteristic stress, which considers the effect of the intermediate principal stress on the
material strength. Referring to the Cam-clay model, the shear dilatancy equation, plastic potential func-
tion and hardening parameter for the developed model were all derived using the characteristic stress.
The model predictions indicated that the established model could quantitatively reproduce the negative
dilatancy behaviour, positive dilatancy behaviour, and three-dimensional strength properties of soils.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The Cam-clay model, which was established and developed by
Roscoe et al. [1,2], is a classic model that includes five material
parameters. This model can accurately predict the deformation
behaviours and strength properties of normally consolidated satu-
rated clay under traditional triaxial compression conditions. More-
over, the Cam-clay model is the first elastoplastic constitutive
model for soils that can reflect the properties of negative dilatancy,
volume yielding, and shear failure [3]. Since the development of
the Cam-clay model, several other models [4–17] have been devel-
oped for soils, including sand and clay, based on the Cam-clay
model.

In fact, soils exhibit different strengths under different stress
paths [18]. The Drucker Prager strength criterion (DPC) was
adopted for the shear failure of clay in the Cam-clay model. Exper-
imental results have demonstrated that the DPC overestimates the
shear strength of geomaterials, except under the traditional triaxial
compression condition, and also results in an incorrect intermedi-
ate principal stress ratio under the plane strain condition [19]. In
this regard, the calculated load capacity of soils tends to be inaccu-
rate when the Cam-clay model is applied to engineering or practi-
cal applications. Similarly, models based on the Cam-clay model

with no strength revisions can only be applied under the tradi-
tional triaxial compression condition.

The strength problem of the Cam-clay model originates from
the fact that the model only has two stress-invariant parameters
(p and q), and none of the other parameters or variables are used
to reflect the three-dimensional (3D) strength of soils [20]. Here,
p ¼ rijdij=3 is the mean stress, and q ¼ ffiffiffiffiffiffiffiffi

3=2
p ffiffiffiffiffiffiffiffiffi

sijsij
p

is the general
shear stress in the principal stress space, where rij is the stress ten-
sor, sij is the deviatoric stress tensor, and dij is the Kronecker delta,
i; j ¼ 1;2;3.

Until now, there have only been two approaches to improving
models using the DPC as the failure condition, such as the Cam-
clay model, for use in general stress states: (1) modifying the shear
dilatancy equation in the principal stress space and (2) combining
other failure criteria with the established models. To reasonably
describe the strength and deformation behaviours of soils under
general stress conditions, different dilatancy equations were used
to develop a yield function or plastic potential function [21]. Then,
two shear dilatancy equations under traditional triaxial compres-
sion and traditional extension conditions were used to describe
the dilatancy behaviour of soils [21]. A cumbersome process was
used to switch the flow rules when the load was mutually changed
from extension to compression or vice versa. Therefore, the consti-
tutive model developed in this manner was rather complex. A dila-
tancy equation for both compression and extension conditions was
proposed [22] using a micromechanics approach. The parameters
in the dilatancy equation could not be easily determined even
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though the dilatancies of the soils were described uniformly. In
addition, the established model still overestimated the strength
under traditional triaxial extension, as illustrated by the compar-
isons between the test data and the predictions. A third stress-
invariant parameter, i.e., Lode’s angle h, was introduced to the dila-
tancy equation to reflect the 3D strength properties of soils [20]. In
this work, q was expressed as a function of p and h, which is
referred to as the g(h) function [23]. This method has been widely
used [24–31] to extend the constitutive models to the 3D stress
space. However, the g(h) function cannot reflect the stress-
induced anisotropy of soils with the increase of the stress ratio
q/p [32]. In addition, g(h) is always highly complex, which makes
the use of the established stress-strain relationships difficult.

On the other hand, a modified stress (tij) concept was proposed
[33] based on the spatially mobilized plane (SMP) to describe the
influence of the intermediate principal stress on the strength of
the soils. Then, the tij-concept was combined with the Cam-clay
model [34], and the Matsuoka-Nakai (MN) criterion was the critical
state line of the Cam-clay model. However, the positive dilatancy
will occur except under the traditional triaxial compression condi-
tion [35]. The original Cam-clay model cannot describe a positive
dilatancy. Therefore, the tij-concept was not an efficient way to
improve models for use in general stress states. Consequently, a
transformed stress concept was proposed [36]. In this concept,
the strength surface of a strength criterion was converted into a
circular surface, which likes the DPC in the principal stress space.
The transformed strength criterion can be applied to constitutive
models using in general stress states. For instance, the MN strength
criterion can better explain the high-quality test results of soils;
therefore, the MN criterion was combined with the Cam-clay
model based on the transformed stress concept. Then the trans-
formed Cam-clay model can accurately describe the 3D strength
properties and deformation behaviours of normally consolidated
clay in complex stress states. Moreover, based on the transformed
stress concept, the Lade strength criterion [37], the MN strength
criterion and the generalized nonlinear strength theory [38] have
also been used to describe the 3D strength properties of saturated
or unsaturated soils [38–43]. The transformed stress concept is
only a method to revise an existing constitutive model to make it
suitable for general stress conditions; it is not a method to estab-
lish a 3D constitutive model. Moreover, the transformed stress
must be derived for a certain strength criterion.

A characterized stress concept was proposed by Lu et al. [44] to
uniformly explain the failure mechanism for the types of geomate-
rials. Using the octahedral plane under the action of bri as the fail-
ure plane and the frictional rule to explain the failure of
geomaterials, a nonlinear unified strength criterion (NUSC) was
developed. The NUSC can be applied to describe the 3D strength
property of different types of geomaterials. In this study, the con-
cept of bri will be further developed. Based on bri, a new modelling
approach was proposed to establish a 3D elastoplastic constitutive
model for soils by referring to the Cam-clay model. First, a new
dilatancy equation was developed in the bri space and was used
to describe the dilatancy of soils with different intermediate prin-
cipal stress effects. The dilatancy equation was then verified and

further derived to obtain the plastic potential function. Then, a
3D elastoplastic constitutive model for soils was established based
on the non-associated flow rule. Finally, the applicability of the
established model along different stress paths was verified using
experimental data obtained by the authors and data available from
the literature.

2. Overview of the bri and NUSC

In the theoretical approach to developing a strength theory, it
has been hypothesized that the failure of geomaterials generally
occurs in the failure plane [45]. The differences among the strength
theories are the corresponding failure planes. On the other hand,
unified strength theories could be applied to describe the interme-
diate principal stress effect for various kinds of materials. The
existing unified strength theories were established by adjusting
the position and outer normal direction of the failure planes, and
the failure planes are all under the action of the principal stresses.

Another way to develop a unified strength theory was proposed
by Lu et al. [44], and this method was based on the simplest failure
plane (octahedral plane) and an adjust acting stress (called the
characteristic stress). The DPC is the upper limit of all nonlinear
strength theories in the deviatoric plane [42]; moreover, the failure
plane of the DPC is the octahedral plane under the action of ri

(i = 1, 2, 3). Hence, the upper limit of the characteristic stress is
ri. The strength curve of the MN strength theory in the deviatoric
plane circumscribes the six corners of the Mohr-Coulomb strength
curve. It is the lower limit of all nonlinear strength theories in the
deviatoric plane [42]. The ri-intercepts of the SMP are k

ffiffiffiffiffiffi
r1

p
, k

ffiffiffiffiffiffi
r2

p
and k

ffiffiffiffiffiffi
r3

p
in the ri space. Therefore, the intercepts of the SMP on

the
ffiffiffiffiffi
ri

p
-axis are all equal to k. If the SMP under the action offfiffiffiffiffi

ri
p ði ¼ 1;2;3Þ is a plane, it will be an octahedral plane. The

ffiffiffiffiffi
ri

p
will be the lower limit of the characteristic stress. Unfortunately,
the SMP expressed in the

ffiffiffiffiffi
ri

p
space is a curved surface.

Thus, the above idea was further developed. The characteristic
stress is defined by combining the principal stress (ri, i = 1, 2, 3)
with a parameter, b, to describe the intermediate principal stress
effect:

bri ¼ pa
ri

pa

� �b

ð1Þ

where pa is the atmospheric pressure, which is used for the dimen-
sionless transformation. The value of b is a constant for a certain
material, and varies with different materials.

The NUSC was developed by assuming the octahedral plane as
the failure plane and using the frictional rule as the failure mech-
anism for geomaterials. Therefore, the stress expressions of the
DPC and the NUSC are similar, as shown in Table 1. In addition,
for a certain material, the stress ratios, bg, are equal for all of the
failure states. Consequently, the failure stress ratios of two simple
failure states are applied to determine the parameter b, and the
failure states are the traditional triaxial compression condition
and traditional triaxial extension condition. The two failure stress
ratios are expressed as:

Table 1
Comparison between the DPC and the NUSC.

DPC NUSC

Strength expression q ¼ Mp bq ¼ Mbp
Mean stress p ¼ rijdij=3 bp ¼ brijdij=3
General shear stress q ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3=2ðrij � pdijÞðrij � pdijÞ
p bq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=2ðbrij � bpdijÞðbrij � bpdijÞq

Stress ratio g ¼ q=p bg ¼ bq=bp
Failure stress ratio M ¼ 6 sinuc

3�sinuc
M ¼ 3 ð1þsinucÞb�ð1�sinucÞb

ð1þsinucÞbþ2ð1�sinucÞb
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