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a b s t r a c t

A rigid block based lower bound limit analysis method for analyzing stability of fractured rock mass in 2D
and 3D conditions is proposed. The rock bridge effects are considered in the general formation. No
assumptions are imposed on the inter-element forces, and the solution obtained is statically admissible.
The proposed method is theoretically rigorous and simple. The validation and efficiency of the proposed
method have been demonstrated through three typical types of slopes, indicating that apart from the
fractures, rock bridge plays a key role in stabilizing rock blocks, which should be greatly concerned in sta-
bility analysis of rock mass.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

For the stability analysis of fractured rock mass, in recent dec-
ades, the key block method and its extension (e.g. the key group
method) have been developed and widely used
[22,9,23,26,27,21,16]. However, the major assumption in the key
block method that blocks move with virtually no cracking, which
would lead to that only the removable blocks are considered for
stability analysis [22,9]. In fact, the rock bridges (i.e., the intact
regions between coplanar or noncoplanar fractures where a com-
bined shear-cracking plane takes place) may lead to the failure of
nonremovable blocks, which are often more unfavorable than the
removable blocks [8,11,4]. Nevertheless, most of the key block
and its extension methods did not provide a procedure to analyze
the stability of rock blocks considering the rock bridges (e.g.,
[22,9,26,27,16,7]). Additionally, the key block method and its
extension need to calculate the stability of all the possible combi-
nations of element blocks one by one. Assuming that there are n
blocks, the number of all the possible combinations of element
blocks is 2n � 1. That is, the possible combination increases expo-
nentially with n. Therefore, it is inefficient to traverse all the com-
binations of element blocks.

Due to the capability of obtaining the upper or lower bound of
accurate solution, limit analysis proved efficient to solve the stabil-
ity problem and gets extensive application (e.g., [5,15,18,28,1,19]).
In contrast, it has been recognized by various researchers that the
lower bound solution is more valuable in practice compared to the
upper bound solution, as it results in a safe design (e.g.,
[20,13,24,17]). The lower bound limit analysis method based on
discontinuous media approach such as rigid finite-element method
(RFEM) [10] has been proposed and it has attracted significant
attentions in recent years [30,14]. These methods seem to provide
new insight for solving the rock mass stability problem. Neverthe-
less, the mechanical properties of rock mass with the intersection
of fractures are complex in space, the stability analysis of rock
mass by assuming a circular slip surface [30] or using two-
dimensional approach is not reasonable [30,14].

In this study, to address the issues mentioned above, a novel
lower bound limit analysis method based on rigid blocks for ana-
lyzing the stability of fractured rock mass in both 2D and 3D con-
ditions is proposed. The validation and efficiency of the proposed
method have been demonstrated through three typical types of
slopes.

2. Description of rock mass system and identification of rock
bridges

Rock bridges play an important role in stabilizing the rock
blocks, in addition to the fractures themselves [11,4]. Thus,
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identification of the possible cracking rock bridges is significant.
Additionally, a proper representation of the rock mass system is
also essential. In this study, the boundary surfaces defining the
interest domain are divided into two types: excavation surfaces
(natural ground or excavated surfaces) and fixed surfaces as shown
in Fig. 1a. Fixed surfaces are the faces that separate the problem
domain from the infinite rock mass. If a block has one or more fixed
faces, then it is defined as an infinite block; otherwise, it is defined
as a finite block [29]. For the purpose of analyzing the stability of
the interest domain, similar to the concept by Yu et al. [29], the
interest domain is firstly subdivided into a finite number of convex
subdomains. Then, the convex subdomains are decomposed into
convex blocks with infinite fractures (Fig. 1b). Further, the infinite
fractures are restored to finite discs (Fig. 1c). The key-block or key-
group block method assembles the interest domain and classifies
the complex blocks before analyzing (Fig. 1d). It ignores the rock
bridge effect due to that the complex block usually is classified
by enclosing the fractures and boundary surfaces. In contrast, in
this work, the rigid block is identified in the procedure of restoring
the infinite fractures to finite discs (Fig. 1c). The rigid block is
enclosed by the fractures, the boundary surfaces and the possible
cracking rock bridges which are represented by the dotted lines.
As a result, the instability region obtained by the proposed method
can be a single key rigid block or groups of rigid blocks. Note that,
in this study, the failure of rock bridges is assumed to occur along
the fractures considering that cracking rock bridges are usually
small pieces of intact rock between fractures.

3. Formulations of lower bound method based on rock mass
system

The lower bound theorem states that the collapse load obtained
from any statically admissible stress field will underestimate the

true collapse load. A statically admissible stress field is one which
(a) satisfies the equations of equilibrium, (b) satisfies the boundary
conditions and (c) does not violate the yield criterion.

3.1. Equilibrium conditions

Assume that the generalized forces at a rock bridge b of a rock
block involve the shear force along S1b, S2b and normal force along
nb in the local coordinate system (S1b, S2b, nb) as shown in Fig. 2.
They can be denoted in a vector form as

Qb ¼ ½V1b V2b Nb �T ; b ¼ 1;2; . . . ;nb ð1Þ

where nb denotes number of all rock bridges. Then, the global force
vector for rock bridges can be written collectively as follows:

Q ¼ ½QT
1 QT

2 . . . QT
nb
�T ð2Þ

In the same way, the global force vector for fractures can be
written as:

P ¼ ½ PT
1 PT

2 . . . PT
nk
�T ð3Þ

where Pk ¼ ½V1k V2k Nk �T denotes the force vector in the local
coordinate system ðS1k; S2k; nkÞ. k ¼ 1;2; . . . ;nk; nk denotes number
of all fractures. For fracture k as shown in Fig. 2, V1k, V2k and Nk

denote shear force along S1k, S2k and normal force along nk,
respectively.

Then, following global equilibrium equation can be drawn:

CTRþ F ¼ 0 ð4Þ

where C ¼ ½C1 C2 �T , R ¼ ½ P Q �T , F ¼ ½ FT
1 FT

2 . . . FT
n �

T ,

Fi ¼ ½ f Xi f Yi f Zi �T , i ¼ 1;2; . . . ;n, n denotes number of all rock
blocks. C1 is matrix assembled by transformation matrix which
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Fig. 1. Subdividing the modeling domain into rigid blocks.
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