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a b s t r a c t

An axisymmetric thermal non-dimensional finite element is used to study the effects of different
parameters on pin fin performance. It is observed that the fin performance may be improved by selecting
an appropriate orthotropic thermal conductivity ratio. The thermal interface between fin and base plate
may have considerable effects on overall heat dissipation, which is minimized by using appropriate
thermal interface materials (TIM); nevertheless the minimized interface resistance depends on TIM
thermal conductivity and its layer thickness. Effects of these two parameters on pin fin performance are
studied in somewhat more detail. The thermal efficiency of fin may further be degraded by scale
deposition on its surface, therefore the effect of scale deposition on a pin fin with TIM is also studied. All
these above investigations are carried out using non-dimensional FE formulation, which directly
provides the dimensionless results for a class of fin problems that become too complex for a dimen-
sionless solution in a closed form.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Application of pin fin as a heat sink is a well known problem
therefore pin fin analyses may be found in the literature [1e4] as
well as the derivation of temperature and heat flow equations for
two-dimensional isotropic pin fins [4e6]. The impact of orthotropic
thermal conductivity on the thermal performance of polymer
composite fins has been studied by few researchers. Bhadur et al. [7]
derived the closed-form solutions for temperature distribution and
heat transfer from orthotropic pin fins; however, their results
cannot be reduced to classical isotropic insulated-tip and convec-
tive-tip two-dimensional solutions. Zubair et al. [8] derived the
generalized analytical solutions for temperature distribution, heat
transfer rate, fin efficiency and fin effectiveness for orthotropic two-
dimensional pin fins subject to convective-tip boundary condition.
Their solution may be reduced to several special cases which also
includes the insulated-tip boundary condition.

The pin finmay be installed by fusion or studwelding to the heat
source, thus forming a continuous thermally conductive path for
heat rejection. However welding is not possible on non-metallic
heat source, therefore pin finmust be attached to the heat source by
some other methods. The contact formed at fin-base plate interface

consists of discrete micro contact spots resulting from surface
roughness thus with trapped air in interstitial gaps. The interface
resistance is therefore higher than heat sink element that can be
overcome through thermal interface materials (TIM), which elimi-
nate the air gaps by conforming to the rough and uneven mating
surfaces, having a thermal conductivity higher than air. Theoretical
as well as numerical approaches have been used to model the
thermal contact resistance. A brief historical review of different
contact resistance estimation is presented in reference [9]. The
contact resistance models are also reviewed in Refs. [10e12],
whereas theoretical models are presented in Refs. [11e17]. Numer-
ical approaches have also been used; a thermo-mechanically
coupled contact element is presented in Ref. [18]. A general three-
dimensional thermal contact resistance finite element is presented
in Ref. [19]. The finite element analysis has also been used to
investigate the thermal contact resistance [20]. However all these
approaches give an appreciable consideration to the resistance
caused by imperfect contact between the two surfaces, which as
discussed earlier, is overcome by using a TIM. TIM replaces the air
contained in the gaps at non-conforming surfaces thus reduces the
interface resistance due to its high thermal conductivity. The
interface at fineTIM and TIMebase plate may considered to be
perfect, thus the governing parameter for the thermal interface
resistance would be TIM thermal conductivity and layer thickness.
This approach is adopted in this paper to model the thermal inter-
face resistance offered by TIM.
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The objective of this paper is to study the effect of orthotropic
thermal conductivity, interface resistance and scale deposition on
the pin fin performance through non-dimensional axisymmetric
finite element. The non-dimensional finite element formulation for
axisymmetric thermal problems is first presented. The dimension-
less finite element is capable of modeling conduction and convec-
tion phenomena for orthotropic materials.

2. Non-dimensional axisymmetric thermal finite element

In this section the non-dimensional finite element formulation
for axisymmetric thermal element is derived through variational
principle.

The governing equation of heat conduction in a cylindrical coor-
dinate system for steady state is [21]:
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The boundary conditions are
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where, kr and kz are the thermal conductivities in r and z-directions,
h is the coefficient of convective heat transfer, Tb and TN are spec-
ified and ambient temperatures respectively, q* is the specified heat
flux and bl; bn are the surface normals. S2 and S3 are separate surface
areas over which heat flux q* (q* is positive into the surface) and
convection loss h(T� TN) are specified because they cannot occur
simultaneously on the same surface.

The non-dimensional form of the governing equation and
boundary conditions may be obtained by defining following non-
dimensional parameters:
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where q is the non-dimensional temperature, r, and z are non-
dimensional spatial variables, Lr, and Lz are themaximumdimensions
of the domain along r and z-directions respectively and Bir and Biz are
Biot numbers.

Introducing the non-dimensional parameters in governing Eq.
(1) and boundary conditions (2) leads to the following dimen-
sionless forms:
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and,
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where z¼ Lz/Lr is the aspect ratio of the domain and q* ¼ q*=hTN is
the non-dimensional specified heat flux.

The variational principle may be used to obtain the element stiff-
nessmatrix and loadvector. Thevariational principle specifies a scalar
quantity (functional P), defined by an integral form for a continuum
problem. The solution of the continuum problem is a function that
makesP stationary with respect to arbitrary changes in it [22].

The functional for heat transfer problem, defined through (4)
and (5), may be written as:
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where V and S are non-dimensional volume and surfaces given by:

V ¼ V
L2r Lz

and S ¼ S
LrLz

(7)

The minimization of P with respect to q yields:

Nomenclature

h Convective heat transfer coefficient
k Thermal conductivity
q Heat flux
r Spatial variable in radial direction
s,t Natural coordinates
t Thickness
z Spatial variable in axial direction
L Fin length
R Fin radius
T Temperature

Non-dimensional variables
q* Specified heat flux
r Spatial variable in radial direction
z Spatial variable in axial direction
Bi Biot Number
q Temperature
h Efficiency
3 Effectiveness
z Aspect ratio of the domain to be discretized.

Non-dimensional matrices and vectors
ffg Element load vector
½k� Element stiffness matrix
½B� Flux-temperature matrix
½D� Material property matrix
½N� Shape function matrix
½L� Geometric dimension ratio matrix
{q} Nodal temperature vector

Subscripts and superscripts
b Base
f Fin
h Convection
i Interface
q Conduction
r Radial
s Scale
z Axial
N Ambient
* Specified value (for flux)

Ratio (conductivity and thickness)
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